VeLO: Training Versatile Learned Optimizers by Scaling Up

Luke Metz! James Harrison! C. Daniel Freeman, Amil Merchant,
Lucas Beyer, James Bradbury, Naman Agarwal, Ben Poole,
Igor Mordatch, Adam Roberts, Jascha Sohl-Dickstein?

Google Research, Brain Team

While deep learning models have replaced hand-designed features across many domains,
these models are still trained with hand-designed optimizers. In this work, we leverage the same
scaling approach behind the success of deep learning to learn versatile optimizers. We train an
optimizer for deep learning which is itself a small neural network that ingests gradients and
outputs parameter updates. Meta-trained with approximately four thousand TPU-months of
compute on a wide variety of optimization tasks, our optimizer not only exhibits compelling
performance, but optimizes in interesting and unexpected ways. It requires no hyperparameter
tuning, instead automatically adapting to the specifics of the problem being optimized. We open
source our learned optimizer, meta-training code, the associated train and test data, and an
extensive optimizer benchmark suite with baselines at velo-code.github.io.
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Figure 1: Optimizer performance on the 83 canonical tasks in the VeLOdrome benchmark. Our
learned optimizer VeLO (red) with no hyperparameters optimizes models dramatically faster than learning
rate-tuned baselines (orange, black dashed), and usually surpasses the performance of NAdamW (brown)
with one thousand trials of per-problem hyperparameter tuning. We exceed the performance of previous
work on learned optimizers: the RNN MLP from Metz et al. [2020a], and the STAR learned optimizer from
Harrison et al. [2022]. The y-axis shows the relative number of steps it takes learning rate-tuned Adam to
achieve the same loss each optimizer reaches after 10K training steps (e.g. a y-axis value of 2 means that it
takes Adam 20K training iterations to reach the same loss). The z-axis shows the fraction of tasks for which
the optimizer achieves at least that large a speedup over learning rate-tuned Adam. On all tasks, we train
faster than learning rate-tuned Adam (all values >1). On about half of the tasks, we are more than 4x faster
than learning rate-tuned Adam. On more than 14% of the tasks, we are more than 16x times faster.
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1 Introduction

Scaling up has been crucial to the success of deep learning across many domains | ,

, , , , , , ) , , |. However,
scaling brings with it several challenges: increased compute, larger datasets and considerably more
engineering effort | , , , |. The field of meta-learning, or the
study of learning machine learning algorithms, has not seen this same explosion of scale. Scaling
meta-learning systems is fundamentally harder for several reasons. In meta-learning, a large training
dataset corresponds to a large set of tasks, which are representative of the tasks a practitioner might
want to optimize. Unlike image and text data that can be gathered from the internet, there is no
standardized or automated way to collect these tasks. Even worse, meta-training over a diverse set
of realistic tasks can be extraordinarily computationally costly, as individual problems within the
task distribution are often themselves computationally expensive. As a result of these difficulties,
very few large scale meta-learning systems exist.

While in supervised learning model sizes are often increased to improve performance, simply
scaling up the model size of a learned optimizer can be problematic. Larger optimizers may require
fewer iterations to achieve good performance, but the overhead per step may increase. A simpler
hand-designed optimizer with less overhead could be run for more training steps or more carefully
tuned to achieve competitive performance. Thus, a balance between overhead and performance must
be struck | , .

In this paper, we present VeLO, a versatile learned optimizer that is parameterized by a neural
network, and meta-trained at a far greater scale than has previously been investigated. We build on
our prior work scaling learned optimizers | , | and scale even further: we meta-train
on three orders of magnitude more tasks, use two orders of magnitude more compute, and develop a
considerably faster learned optimizer architecture. The resulting learned optimizer performs better
with less computational overhead, enabling training of much larger models.

VeLO requires no hyperparameter tuning, and works well on a wide variety of neural network
training tasks. We evaluate VeLO’s generalization abilities with VeLOdrome, a new optimization
benchmark, and show VeLLO’s ability to generalize to new problems not seen during meta-training.
We also evaluate on a wide range of real-world models, including language, vision, and decision
Transformers; vision models such as ResNets, NERF models, and detection models; and other models
such as recurrent and graph networks. VeLO represents the first general-purpose learned optimizer
for deep learning, and serves as concrete evidence of the viability of learned optimization.

1.1 Try VeLO
We designed VeLO to be easy to try on any JAX model that uses Optax | ) |:

from learned_optimization.research.general_lopt import prefab
opt = prefab.optax_lopt(total_training_steps)
opt_state = opt.init(params)

updates, opt_state = opt.update(grads, opt_state, params=params,
extra_args={"loss": loss})
params = optax.apply_updates (params, updates)

We also provide a simple Colab notebook that trains one of a variety of test problems we have
implemented in the learned_optimization package | , |.


https://colab.sandbox.google.com/github/google/learned_optimization/blob/main/learned_optimization/research/general_lopt/Demo_for_training_a_model_with_a_learned_optimizer.ipynb

2 Problem Setting: Learned Optimization

Consider using an optimizer to train a neural network with parameters ¢’ indexed by training step ¢,
with total number of optimization steps N. The training loss for the minibatch at time ¢ is written
¢;(¢!). Training with minibatch stochastic gradient descent (SGD), the update dynamics take the
form:

' = ¢! — aVli (") (1)

where the learning rate « is the only meta-parameter (or hyperparameter). Defining Usgp(g; o) = ag,
we can write the SGD update as:

't = ¢! — Usap (Vgile(9'); ) . (2)

Learned update rules. The core idea behind learned optimizers is to replace the fixed-form
update rule Usgp, which is a function of one (meta-)parameter (learning rate «) with a more flexible
form, parameterized by many more meta-parameters. In this work, we parameterize the update
U(g,...;0) as a neural network with meta-parameters 6, which takes as input gradients g. By allowing
for a more expressive update function, it is possible to have faster training and thus a more useful
optimizer. This comes at the cost of making it harder to find the values of the meta-parameters
which result in the best performance.

The update rule U(+;0) can take additional inputs beyond just the gradient. For example, the
update can also depend on the current parameter values ¢, or the value of the loss at the current
timestep. It can also utilize recurrence across training steps, either using a recurrent neural network,
or more simply by accumulating exponential moving averages of gradients (as done by Adam |

, | and momentum), iterates, or any other statistic available during training.

These learned update rules are often parameterized in a manner that applies the same computation
across each parameter of the model being optimized | ) , , ]
This allows them to be applied to networks of different sizes than those used during training.
Meta-training. Meta-training is the process of finding the (meta-)parameters 6 of the update rule
U(+;0) such that the resulting optimizer performs well on some specified meta-objective. Intuitively,
this meta-objective defines what it means for an optimizer to be “good at optimizing”; in this work
we write the meta-loss as L(6). In prior work, the meta-loss is commonly defined as the average
training loss throughout training 3 Zi\; L (8 or the loss £ (¢™) at the end of training. It can also
be non-standard measurements such as the final validation loss €Valid(¢N ), which would encourage
the learned optimizer to train models in such a way that they generalize well | , |.
Methods used to train learned optimizers, or modify the parameters of the update rule () to improve
this meta-objective, include backprop | , |, reinforcement learning |

, ,b], and evolution | , , , .

In this work, we leverage gradient-based meta-learning, but with gradients computed with Evolu-
tion Strategies (ES) | , , , , , | rather
than backpropagation. The primary benefit of ES over analytic gradients—in addition to improved
memory efficiency—is that it provides unbiased estimates of the gradient of a Gaussian-smoothed
meta-loss. This Gaussian-smoothing averages over the extreme sensitivity of the optimization
trajectory {¢!: ¢t € [1,..., N]} to the exact value of the meta-parameters . Without this smoothing,
meta-training is often extremely unstable [ ) ]

Much like in standard hyperparameter tuning, meta-training can be done on a single task.
While this results in an extremely performant optimizer for that task, the amortized cost including
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Figure 2: (a) Training and meta-training. The learned optimizer’s update rule U (-;6) has
meta-parameters 6, and generates updates to the parameters ¢ of a model it is training. In the figure
we only show the update rule taking parameter values and gradients as inputs, but the update may
take any features of the problem as an input. Inner-training consists of applying the learned optimizer
for N optimization steps, producing final parameters ¢V, which is a function of the meta-parameters
0. After inner-training, the meta-loss L (¢ (6)) is used to evaluate the performance of the trained
model. An estimate of the gradient of the meta-loss (in our case estimated using Evolution Strategies)
is then used to update 6. This process is repeated in order to meta-train the parameters 8 of the
learned optimizer. (b) The hierarchical architecture of the learned optimizer. The learned
optimizer’s architecture is adapted to match the architecture of the problem it is optimizing. For
each scalar weight ¢;;, a tiny hypernetwork MLP (hMLP) takes as input information about the
weight’s gradients and iterates, and outputs a scalar update to the weight’s value. The parameters
of the tiny MLP are set by an LSTM with parameters . One copy of the LSTM is constructed for
each weight tensor ¢.; in the inner problem, and each LSTM sets the parameters for many MLPs.
The LSTMs for all weight tensors coordinate with each other by outputing a global context signal.
This signal is max-pooled over all LSTMs, before being provided back as input to each LSTM.

meta-training is too large to make this worthwhile for most applications. Instead, we amortize | ,
| the meta-training cost over a large distribution of tasks (Section 3.2), with the goal of learning
an optimizer that generalizes well to new tasks.

3 Methods: Large Scale Optimizer Training

In this section, we highlight the most important aspects of our system:

1. the learned optimizer architecture, i.e. the functional form of U(-;6);

2. the distribution of tasks on which the optimizer is meta-trained; and

3. the details of the meta-training, such as gradient estimation and curricula.
This section provides only a brief discussion of each element, with more detailed discussion reserved
for the Appendix. See our code repository for the complete implementation of our architecture; links
to specific components of the training infrastructure are provided throughout the appendix.


https://github.com/google/learned_optimization/blob/main/learned_optimization/learned_optimizers/adafac_mlp_lopt.py

3.1 Learned Optimizer Architecture

Hierarchical hypernetwork. To be useful, our learned optimizer must both be computation-
ally efficient and expressive. We leverage a two-layer hierarchy of computation: a “per-tensor”
LSTM | , | which operates on features derived by aggregating
information from each parameter tensor in various ways, and a “per-parameter” MLP which operates
on each parameter scalar. To increase the capacity of this network, we can add computation to the
per-parameter network, which scales linearly with the number of parameters, or to the per-tensor
network, which scales linearly with the number of tensors, and thus is considerably more efficient.
Figure 2 visualizes our learned optimizer architecture.
Next, we consider how to route information through the hierarchy. Past work | ,

, , | passed the results of the per-tensor network directly to the per-parameter
MLP as additional conditioning. This introduces a number of additional input features, which not
only slow down the per-parameter model, but can also be hard to effectively use, given that the
per-parameter model is applied to every parameter, and thus must be tiny to reduce overhead (in
our case, it is an MLP with 4 hidden units). As a solution to this, we leverage hypernetworks |

, |. Instead of generating information used to condition the MLP, the per-tensor network
generates the weight matrices of the per-parameter MLP. This allows for more expressive per-tensor
computation without increasing the cost of the per-parameter network.
Per-tensor LSTM. We use a 512 hidden-unit LSTM with a variety of input features inspired
by | |. First, we use the mean and variance of parameter values, the exponential
moving averages of the gradient and squared gradient (as used in the Adam update). The per-tensor
network also takes as input a series of additional features representing the current fraction of training
completed, so that it can learn training-time dependent strategies, such as learning rate schedules.
Finally, our per-tensor network has access to the training loss which can enable complex behaviors
such as detecting divergence of the loss.

Per-parameter MLP. Our per-parameter MLP follows [ |, and leverages an
extremely small MLP (2-hidden layer, 4-hidden unit) operating on the collection of features specifically
found to be both fast to compute and performant. Unlike in [ |, the weights of this

per-parameter network are not fixed for all tasks, but instead generated by the per-tensor model.

3.2 Data: A Diverse Distribution of Tasks

Unlike in supervised learning, there are no standard, large-scale distributions of tasks for learned
optimizer training. Following | |, we construct a parametric task distribution for
meta-training. Tasks are generated by sampling a model family, training dataset, training loss
function, and architectural hyperparameters including hidden layer widths, depth, and activation

function. Model families include MLPs, ConvNets, ResNets | , |, Transformers |
, |, Vision Transformers | , ], RNNs, auto-encoders, variational
auto-encoders | ) |, and even other learned optimizers.

To provide additional variation during meta-training, and analogous to data-augmentation, we
perform a series of “task-augmentations”—programmatic modifications to tasks which change the
training dynamics. Examples of these task augmentations include: re-parameterizing weight tensors,
estimating gradients only in subspaces, introducing asynchronicity in gradient calculation, and
changing floating-point precision.



Because tasks are sampled from a wide distribution, their run times vary greatly, sometimes by
more than 3 orders of magnitude. To lower the cost of meta-training, we use rejection sampling
based on the estimated training time in order to meta-train on fast tasks more frequently than slow
ones.

3.3 Meta-Training

Meta-objective. The measure of optimization performance we focus on is the training loss at
the end of training (setting L(0) = £x(¢"), where ¢~ depends on ). Empirically, we found that
targeting final loss yields optimizers which train models to lower loss values than would be possible
by targeting average loss as is done in most previous work | , |. While we believe final
loss is often most important for users, the resulting learned optimizers can exhibit counter-intuitive
behavior at intermediate training times. For example, they may not monotonically lower the loss,
and may plateau or in extreme cases even increase loss over part of training.

Meta-gradient estimation. We leverage ES to estimate gradients of this meta-objective. Unlike
past work | , , |, we use full length unrolls, and train each model to completion for
each meta-gradient evaluation. This is in contrast to truncated methods, which yield a meta-gradient
for a subset of an inner training run. Full length unrolls are significantly less compute efficient.
However, using them makes it straightforward to target the final training loss, and has the added
benefit of reducing communication overhead when doing distributed training.

Multi-task training. To encourage meta-generalization, we meta-train on a wide variety of tasks.
This is challenging as each task has a different loss scale and thus gradients can not be directly
averaged. Instead of manually normalizing each loss to a uniform scale, we normalize the gradients
from each task to be unit-length before averaging them across different tasks.

Curriculum. We use an increasing curriculum over both the number of training iterations and
problem size (as measured by the time required for a forward pass, as is used in our task rejection
sampling) to dramatically speed up meta-training.

Vectorization and compilation. We make extensive use of JAX’s vectorization (vmap) to par-
allelize compute across batches of different tasks, and thus make better use of accelerators. We
additionally use JAX’s compilation (jit) which greatly accelerates these non-standard workloads on
both TPU and GPU.

Data-parallel training on a massive cluster. Meta-training occurs on anywhere from 1K to
4K TPU-based accelerators, physically distributed around the world. Gradients are computed and
applied in an asynchronous, batched manner with an increasing batch size between 10K-40K tasks.
Training took approximately 4 weeks; meta-training curves are presented in Appendix E.

4 Evaluating Learned Optimizers

Evaluation of optimizers in machine learning is notoriously difficult | , , ,

|. Evaluating learned optimizers is more difficult still, as one has to additionally consider the
degree to which evaluation tasks are “out of distribution” relative to the training task distribution.
As such, in this section we present several different evaluations of VeLLO, with varying degrees and
types of distribution shift in the evaluation tasks. In particular, we present three distinct benchmarks.
First, we present VeLOdrome, a diverse evaluation set that can be run relatively efficiently. Second,
we benchmark VeLLO on the MLCommons algorithms test problems. Finally, we present evaluations



on a broad range of real-world state of the art models including vision, language, and decision
Transformers among several others. We also present an investigation of problems in which VeLLO
fails or underperforms baselines.

4.1 VeLOdrome: A Canonical Evaluation Set of 83 Tasks

For our first set of evaluations, we use a test set of relatively small deep learning models, which
we refer to as VeLOdrome. These are similar to tasks used for meta-training, though they are
hand-designed to be more canonical than the often unusual task specifications sampled during
meta-training. Our main consideration for size here is training time; each model is designed to be
able to be trained on a single accelerator in under an hour. This enables both rapid evaluation of
our learned optimizer, but also aggressive tuning of baseline optimizers for fair comparison. This set
contains 83 tasks, including convolutional networks, variational auto-encoders, residual networks,
and language models such as recurrent networks and Transformers. In addition to evaluating learned
optimizers, we hope this distribution of tasks can serve as a starting point for hand-designed optimizer
evaluation. For full details on VeLOdrome, see Appendix C.

4.1.1 Baseline Optimizers

One area that makes optimizer comparison difficult is hyperparameter tuning. By design, our learned
optimizers require no per-problem tuning, whereas hand-designed optimizers are typically ineffective
unless hyperparameter-tuned on a new task. We explore different levels of hyperparameter tuning,
ranging from learning rate tuning—evaluating 15 different trials logarithmically spaced with half
powers of 10—to searching over a wider search space with 1K trials. For our learning rate-tuned

optimizers, we evaluate 15 hand-designed optimizers: Adam | , |, AdaBelief
| , |, SGD with momentum, RMSProp | , |, SM3 |
, |, SM3 with momentum, Yogi | , |, RAdam | , |, LARS |
) |, LAMB | , |, Fromage | , |, AdamW |
, |, AdaFactor | ) |, Adagrad | , |, and Shampoo

| , , ) | with 6 different grafting types | , |.

As a more aggressively-tuned baseline optimizer, we use Nesterov accelerated AdamW | ,

| with tunable learning rate, 31, 2, €, weight decay (both applied separately from momentum as
in AdamW, and not), and a cosine learning rate schedule (with optional warm-up). We searched over
1000 hyperparameter configurations for this optimizer; see Appendix C.2 of | | for a
complete description. NAdamW is a superset of many popular optimizers (see discussion of NAdam
in [ ]), and so with sufficient tuning will achieve best-case performance across a variety
of hand-designed optimizers. We also evaluate a meta-learned list of hyperparameter configurations—
“OptList”, described by | |. OptList achieves much better performance than the
learning rate-tuned optimizers, while only requiring 10 hyperparameter evaluation trials.

To the best of our knowledge, this is the largest optimizer benchmark to date with respect to
both the number of tasks, and the number of optimizers evaluated. Learning curves for >1 million
trained models are open-sourced.

4.1.2 Normalized Performance Across Tasks

These problems all have dramatically different scales for losses, making comparisons across different
tasks difficult. To enable easy comparison of optimizers across diverse tasks, we report the improve-


https://learned-optimization.readthedocs.io/en/latest/optimizer_baselines.html
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Figure 3: Best- and worst-case VeLO performance. We plot the two optimization tasks where
the learned optimizer performs (a,b) best and (c,d) worst compared to baseline optimizers, from
the 83 VeLOdrome evaluation tasks described in Section 4.1.

ment in training time an optimizer achieves on each task compared to a baseline optimizer—in this
case, learning rate-tuned Adam. For example, a value of 2.0 indicates the final loss achieved by a
target optimizer could be achieved by running the baseline for double the amount of training time.
See Appendix F.1 for a complete description of this metric.

In Figure 1, we take all tasks, normalize performance relative to the tuned Adam baseline, sort

the values (independently for each optimizer), and plot. In this visualization, we can quickly read off
the fraction of time an optimizer outperforms a particular baseline. We find that VeLLO outperforms
all learning rate-tuned optimizers on all problems. On >85% of tasks, it also outperforms the
extensive 1000 trial NAdamW hyperparameter search with only a single training run. We also
compare to two previous learned optimizers, the RNN MLP LOpt from Metz et al. [2020a]' and a
STAR learned optimizer from Harrison et al. [2022]2.
Best and worst case tasks. Next, we explore the specific tasks on which VeLLO performs best
and worst. To do this, we sort the tasks by the difference in performance between VeLO and the
best baseline, and show the two tasks at each extreme (Figure 3). On the task with the best relative
performance—an MLP with dropout—all optimizers except VeLO and heavily tuned NAdamW fail.
On the task with the worst relative performance—an LSTM with a large vocabulary—VeLLO still
performs second best out of all optimizer classes.

4.2 MLCommons Tasks

We investigate a set of six different tasks from the MLCommons algorithms track. These tasks are
out-of-distribution relative to training tasks, primarily due to their scale—they are significantly
larger than those seen during meta-training. We present only the training loss in the main text.
Other metrics are presented in Appendix G.7.

For each model family, we compare to an Adam baseline with a learning rate warm up of 5% of
total training iterations, and a cosine decay with a learning rate and weight decay searched in log
space between [1072,1074] and [1072, 1] respectively with 20 random trials. This search space itself
was chosen by the MLCommons organizers, based on the top performing hyperparameters across

!For RNN MLP LOpt we use the final pre-trained model from that effort. This model was meta-trained targeting
validation rather than training loss, so is being evaluated slightly out of distribution.
ZNote that the STAR optimizer was only meta-trained on a single task.


https://mlcommons.org/en/groups/research-algorithms
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Figure 4: VeLO performance on six MLCommons workloads. On all but one of the workloads
(OGBG Graph NN), VeLO matches or outperforms the best trial of tuned Adam (with learning rate
schedule and weight decay).

the tasks from a larger search space with 100 trials each. In addition to comparing against VeLLO
applied for the same number of training steps as the baseline, we also compare to VeLO applied for
only 75% as many training iterations. This shows VeLO’s ability to adapt its update steps to the
total training time. Results for all tasks in the evaluation are presented in Figure 4.

4.3 Generalization to Tasks Unlike Any Used for Meta-Training

In this subsection we evaluate VeLLO on a diverse set of tasks, many of which are much larger than
those seen during meta-training, and all of which are outside of the meta-training distribution. As
elsewhere in the paper body, we present only training loss. Validation loss, and other performance
metrics, are provided for selected tasks in Appendix G.

4.3.1 NERF

We test VeLO on NERF tasks [Mildenhall et al., 2020], a family of algorithms never seen during meta-
training (Figure 5). We use the JAXNerf [Deng et al., 2020] code base, and compare VeLO against
a variety of tuned baseline optimizers. VeLO outperforms learning rate-tuned baseline optimizers
without any tuning, and performs comparably to the extensively-tuned NAdamW optimizer.

10
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Figure 5: VeLO performs well on out of distribution Nerf and MLP-Mixer tasks. We
show performance on (a,b) two NERF tasks, and (c,d) two MLP-Mixer models trained on ImageNet.
No NERF or MLP-Mixer tasks were included in the meta-training distribution.

4.3.2 MLP-Mixer

Next we apply VeLO to optimize MLP-Mixer models [Tolstikhin et al., 2021], trained on 64x64
ImageNet (Figure 5). This family of models was never seen during meta-training. VeL.O outperforms
learning rate-tuned baseline optimizers, and performs comparably to or better than the extensively
tuned NAdamW optimizer.

4.3.3 Large-scale Vision Transformers

We test VeLO on much larger ViT models (up to B/8 and H/14), which are difficult to optimize
with existing techniques and often encounter instabilities [Chen et al., 2021b]. We train them on
the JFT-3B dataset for 900M examples (i.e. less than one epoch) following Zhai et al. [2022], to
avoid the need to tweak augmentation and regularization and focus solely on applying the learned
optimizer at scale. Figure 6 (left) shows training curves for the learned optimizer along with the
heavily tuned Adam baseline currently used for ViT research. The learned optimizer matches or
outperforms Adam on all ViT-B models, but starts falling behind on the larger ViT-L and ViT-H
variants. The larger models ViT-L and ViT-H have approximately 300M and 650M parameters,
respectively. It is encouraging that this first attempt using a learned optimizer for this class of
problems, without any tuning, matches or approaches these very strong Adam baselines. The Adam
baseline includes weight decay, gradient clipping, learning rate schedules, and warm up/cooldown
schedules, all of which have been hand-tuned over the course of more than a year.

4.3.4 Knowledge Distillation

Knowledge distillation, especially for model compression, is an especially difficult optimization task
[Bever et al., 2022b, Stanton et al., 2021| with immediate practical application. At the same time,
it is a task which was not included in VeLLO’s meta-training curriculum, and hence a good test of
its generalization. We closely follow (and use the codebase of) Beyer et al. [2022b], and distill the
teacher into the (BiT) ResNet-50 student using the “function matching” approach. Figure 6 (right)
shows that VeLO consistently outperforms the published baseline across all durations. Note that
for the longer training runs, we increase the batch-size to 65K in order to stay within VeLO’s step
budget. See Section 5.2 for discussion of VeLO’s ability to make use of larger training batches than
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Figure 6: (a) Large-scale ViT training on JFT. VeLO matches heavily tuned Adam with bells
and whistles in most cases, but falls behind for the largest ViT-H/14 (650M parameters). (b)
Distilling a ResNet-152x2 to a ResNet-50 student on ImageNet following Beyer et al. [2022D)].
VeLLO performs better than the standard baseline.

baseline methods.

4.3.5 Object Detection with Faster R-CNN

There are no direct object detection models included in the meta-training set, making training
popular models such as Faster R-CNN [Ren et al., 2015] an interesting out-of-distribution benchmark.
In Figure 7a, VeLO outperforms the standard stochastic gradient descent (SGD) optimizer with
piecewise constant learning rates which is typically used for this task.

4.3.6 Multi-Game Decision Transformers

We also test VeLO on training large-scale Decision Transformers—a class of model which solves
reinforcement learning problems via sequence modeling [Chen et al., 2021a]. We train a 200M
decoder-only Transformer model on sequences of interleaved images, returns, and actions. Following
Lee et al. [2022], a single model is trained to simultaneously play 46 Atari games [Bellemare et al.,
2013]. This was previously done using a tuned Adam optimizer with custom learning rate schedule.
Figure 7b shows training curves for the learned optimizer compared with the tuned Adam baseline,
showing comparable performance between the tuned baseline and VeL.O.

4.3.7 Large Language Models

A common setting for optimizing Transformer language models is a single epoch training run over a
dataset with a large fixed number of tokens. In this setting, two key focus areas for optimization
are increasing the maximum batch size that can be used without significantly reducing convergence,
and (for conventional optimizers) identifying a learning rate schedule that anneals down to the best
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Figure 7: (a) Object detection with Faster-RCNN. VeLO performs better on training loss
than the typical SGD staircase learning rate schedule. (b) Learned optimizer performance on
Decision Transformers. VeLO matches the current hand-tuned Adam optimizer.

possible model after the specified number of steps. We show that VeLO does well on the latter (after
resolving an issue with activation scales) but underperforms a heavily-tuned baseline (Adafactor
with LR tuning and cosine decay) on the former.

Out of the box, VeLO performed relatively poorly on a 100M parameter Transformer language
model trained on 20B tokens of C4 [Raffel et al.; 2020] at various batch sizes, with divergence on
many runs. We identified that this divergence was due to unbounded growth in activation magnitudes
which eventually cause precision issues, and addressed it by adding weight decay (discussed in more
detail in Section F.4.4). This growth in parameter magnitudes (and thus activation magnitudes)
is likely a consequence of the these experiments being much larger than the tasks on which VeLO
was trained. With weight decay of le-6 (which unfortunately adds a tunable hyperparameter to
VeLO), the optimization is stable and outperforms an LR-tuned Adafactor baseline at small batch,
but begins to underperform at very large batch sizes (Figure 8a).

4.3.8 Chemical Properties of Materials with Graph Networks

Both graph neural networks (GNNs), and scientific data are out-of-distribution tasks for VeLO,
and it showed its weakest MLCommons performance on the GNN task (Section F.3). Despite this,
in a separate experiment with a GNN applied to scientific data, VeLLO performed better than the
hand-tuned baseline currently in use (Figure 8b). When applied for only 46K training steps, VeLO
outperformed 184K training steps of the baseline optimizer. However, as discussed in Section 4.4.2,
VeLLO performs less well on longer training runs. The model for this figure is a message-passing
GNN [Gilmer et al., 2017] with 3 layers, trained to predict energies based on a dataset of known
inorganic crystals from Materials Project [Jain et al.; 2013]. The input graph representation has
nodes representing atoms and edges representing interatomic distances.

This evaluation differs from the MLCommons ogbg [Hu et al., 2020] benchmark due to multi-edges
arising from periodic boundary conditions instead of isolated molecules. Additionally, the associated
task is a regression task, in comparison to the binary label prediction in ogbg. See Appendix F.4.5
for more information and generalization performance.
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Figure 8: (a) Transformer LM training with VeLO and Adafactor. Models with 100M
parameters were trained to 20B tokens with various batch sizes. VeLLO with weight decay performs
better for small batch but underperforms an LR-tuned Adafactor baseline with cosine decay at
large batch. (b) Learned optimizer applied to Graph NN predicting chemical properties
of materials. We show different training horizons in color. We find VeLO is more than 3x faster
than a hyperparameter-tuned Adam for shorter training horizons, and reaches lower loss for longer
horizons.

4.4 Limitations and Failure Cases

In this subsection we discuss the observed limitations and failure cases of VeLLO. We define failure
broadly: if VeLLO is not comparable in performance to a tuned baseline, we consider this to be a
failure. This is a high bar, especially since VeLLO has no hyperparameter tuning. The failures below
all occur when VeLO is asked to optimize tasks which are very unlike tasks in its meta-training
distribution.

4.4.1 Scaling to Models Larger than 500M Parameters

Across several domains, we observed performance decreases relative to baselines with larger model
size (as measured by number of parameters). In our ViT experiments, VeLO’s performance lagged
behind tuned baselines for the largest models. In particular, the H/14 model (650M) notably
underperformed relative to the baseline model.

In our LLM experiments, VeLO performed relatively poorly and was fairly unstable for the
largest evaluated models. Figure 9 shows a single run of an 8B parameter Transformer trained on
160B tokens of C4. VeLO (with weight decay of 1e-6) underperforms an untuned Adafactor baseline
with 1/4 the batch, even on a step-for-step basis, although we emphasize that this model size is far
out of the meta-training distribution.

The performance of VeLLO lags behind baselines, or even decreases, as model size is increased
beyon approximately 500M parameters. These models are far out of the meta-training distribution,
which contains only a small number of tasks which are even 5% this size. Achieving better meta-
generalization to training large scale models—and ideally, consistent performance for any size of
model—is an important direction for future work.
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4.4.2 Scaling to Longer than 200K Training Steps

VeLLO was originally meta-trained on optimization tasks which involved 20K or fewer steps of inner
training. VeLO was then finetuned on problems with up to 200K inner training steps (see Appendix
E.4 for more details). We find that VeLLO’s performance relative to baseline optimizers worsens as
the number of training steps approaches, and then exceeds, 200K.

A particularly dramatic example of this is the GNN task from Section 4.3.8. There, VeLO is far
more effective than the tuned baseline when used for up to ~150K training steps. When applied for
200K steps or longer however, it begins to perform worse not only relative to the baseline, but also
in an absolute sense.

4.4.3 Extended Training

It is common to extend the training of a model after an initial run. For example, in transfer learning,
a pretrained model is finetuned on a different dataset and/or objective to perform a specific task or
set of tasks. Underfit models may also have their training continued on additional data or epochs of
the same dataset.

Since VeLO is conditioned on the total number of iterations during inner-training and the inner
parameters were always initialized to a random state during meta-training, we find that it struggles
to extend training beyond its initially specified number of iterations. The resulting behavior differs
depending on how the optimizer state is set for the extended training, but in many cases it is possible
to partially remedy the poor performance. We explored the following options for continuation from
a completed VeLO training run:

e Naive Continue: Continue from the final optimizer state of the previous run, allowing the

iteration number to be greater than the total number of steps the optimizer is conditioned on:
a state that was never observed during meta-training.

e Full Reset: Initialize the optimizer state from scratch, as is done at the beginning of a standard

training run, conditioning on the length of the continuation run.

e Reset Steps: Continue from the final optimizer state of the previous run but reset the iteration

to 0 and the number of steps to the length of the continuation run.
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Figure 10: (a) Comparison of methods for extending a VeLO training run on example
problem. We train an image MLP model on a CIFAR10 for 8,000 steps with VeLO (“Complete,
8K") and then extend training for an additional 12,000 steps with VeLO, adjusting the optimizer
state in several ways, as described in the text. (b) Histogram of ranks of final training loss
for each continuation method in large-scale evaluation of 620 tasks. We train each task
for 20,000 total steps, splitting the steps across 2 VeLO runs (except for "Complete") at a point
sampled from N (10000, 5000%), and applying each of the continuation methods.

e Increase Steps: Continue from the final optimizer state of the previous run but increase the
number of steps the optimizer is conditioned on to be the sum of the lengths of the initial run
and continuation.

We compare these approaches anecdotally (Figure 10, left) and by evaluating them on 620
different tasks (Figure 10, right) with continuation points sampled from a Normal distribution
centered at half of the total training steps. When comparing the final training losses, we find that
naive continue performs the worst in 52% of experiments and observe anecdotally that it tends
to diverge slowly throughout the run. Full reset is second worst, often resulting in a large initial
spike in the loss, followed by a slow partial recovery. Increase steps performs better than all other
continuation methods in 49% of the experiments, the next best being reset steps for 25%. However,
doing the complete training in a single run performs best overall in 38% of the experiments, beating
increase steps in 54% of them.

We also explore the behavior of VeLO when extending training from a model partially trained
with a different optimizer, which is sometimes done during finetuning. In Figure 26 we see that,
similar to the full reset VeLO continuation, the loss immediately spikes. This demonstrates that
VeLLO has limited ability to generalize from a non-random initial state.

4.4.4 Reinforcement Learning

To test how far out of the meta-training domain we could push VeLO, we also considered continuous
control reinforcement learning tasks using the Brax physics engine [Freeman et al., 2021]. We
consider the Ant task, which requires optimizing a locomotion policy for an 8-degree-of-freedom
quadruped (Figure 11). We consider two optimization problems: (a) PPO [Schulman et al., 2017],
which optimizes a 4-layer, 32-neuron fully connected policy network as well as a 5-layer, 256-neuron
value network, and (b) ES [Rechenberg, 1973], which only optimizes the policy network. Both are
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Figure 11: VeLO struggles to train the standard Ant task in reinforcement learning.
VeLO was not meta-trained on any reinforcement learning tasks, and so this corre-
sponds to out-of-domain generalization. We compare VeLO against Adam-aggregated gradi-
ents in (a) PPO and (b) ES. While the learned optimizer is able to learn a locomotive gait when
aggregating PPO gradients, it does not perform as well as Adam, and in the case of ES, it fails to
learn a locomotive gait at all, learning only to stand in place. Different lopt curves indicate different
target number of training steps fed into the learned optimizer as a feature.

targeting the same reward function, which roughly measures how far the ant locomotes to the right.
For both PPO and ES, we compare VeLLO against Adam, a standard baseline. While the learned
optimizer is able to find a locomotive gait when aggregating PPO gradients, the reward it reaches
is considerably lower than the score achieved by default Adam. Additionally, in the case of ES,
VeL.O fails to escape the local minimum of “standing still”, where the Ant does not move at all at
initialization.

5 Understanding Learned Optimizer Behavior

Learned optimizers can behave in more diverse ways than hand-designed optimizers. At the same
time, they are often even more inscrutable than hand-designed optimizers, since their complex
functional form means their behavior must be characterized with techniques designed to study black

box systems | , |. In this section we experimentally characterize aspects
of VeLO’s behavior.

5.1 VeLO Adapts to Training Horizon

Learning rate decay is a simple yet powerful technique to increase performance near some pre-
specified end of training, and is commonly used in hand-designed optimizers in a variety of problems.
Motivated by this, our optimizer has access to an embedding of the fraction through training of the
current iteration. To probe how VeLO makes use of this feature, we train two tasks using VeLO for
different lengths of time (Figure 12). We observe that VeL.O intelligently makes use of this feature
and drops the loss dramatically just before the end of training.
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Figure 12: Learned optimizers take into account the target training length. We vary the
length of inner training from 1K to 10K steps (shown in different colors) for an MLP and ConvNet.
For both problems, near the end of training the loss decreases rapidly.

5.1.1 VeLO Learns an Implicit Step Size Schedule

One way in which VeLO uses information about the fraction through training is by adjusting its
parameter update steps on an implicit schedule. To illustrate this, we train 3 models, a small MLP,
a ConvNet, and a Transformer, and monitor the size of step taken for each tensor over the course of
training (Figure 13). First, we note there is large variation in step size not only between different
tasks, but also between different parameter tensors within the same task—differences can be as
large as 6 orders of magnitude! This level of variation is not generated by any of the hand-designed
optimizers we examine. Second, we note the implicit schedule learned by VeLO. We see signs of
step size warm-ups, as well as a step size decay. These features where not encoded by us, and result
entirely from the meta-training process. For further details and experiments showing a comparison
of loss values, and different baseline optimizers, see G.3.

5.2 VeLO Can Have a Larger Critical Batch Size than Baseline Optimizers

Training on large batches is extremely important for large scale distributed training, as it lowers the
communication cost between chips and enables increased utilization of hardware. Prior work [Shallue
et al., 2018; McCandlish et al.; 2018, Zhang et al.; 2019] has shown that one can increase the batch
size while proportionally decreasing the number of weight updates (maintaining a fixed number
of total gradient evaluations) up until a point where performance starts to fall of, which has been
referred to as the critical batch size. It has been shown that optimizers that make use of momentum,
and /or more sophisticated preconditioners can be used to increase this critical batch size [Zhang
et al,, 2019]. We explore whether VeLO can make effective use of batches that are larger than the
critical batch size for hand-designed optimizers.

We take two 5 layer Transformers with 128 and 512 dimensions and sweep the batch size while
simultaneously decreasing the number of steps, keeping the total number of examples seen the
same (Figure 14). For all models, we train for 2! examples. Thus, for a batch size of 26, we only
make 8 training steps. For each batch size, we tune learning rates of Adam, SGDM, and SGD,
selecting the best one. We only use a single trial of VeLO. In addition to doing considerably better

18



MLP ConvNet Transformer

107! 107t 107t
1073 1073 A 1073 4
[}
N
(2]
a 107° 1075 A 1075 1
[
L
n
1077 1077 4 1077 A
(b)
107° = T T T T T 1070 1 T T T T T 107° 4 T T T T v
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Training steps Training steps Training steps

Figure 13: VeLO adapts update step length to task, parameter type, and training itera-
tion. We monitor the step size of each tensor (shown in different colors) for 3 different models—a
3 hidden layer MLP trained on CIFAR10, a 3 hidden layer ConvNet with batch norm [loffe and
Szegedy, 2015] trained on CIFAR10, and a small Transformer trained on LM1B. We find the learned
optimizer takes different sized steps across each model type, as well as different sized steps for
different tensors. Additionally VeLLO learns schedules which are shared across tasks including a rapid
step size increase, and a gradual step size decay.

than the baseline optimizers, VeLO makes use of significantly larger batch sizes. In the case of the
two Transformers, VeLO has a critical batch size around 10x larger than baseline methods. See
Appendix G.9 for this result on 4 additional models.

We note that this increased critical batch size does not appear to hold for larger models than
those investigated in this subsection; for example, Figure8 does not show meaningful changes to
critical batch size. This is likely due to the these 100M parameter Transformer models being far
out of the meta-training distribution, compared to those investigated in this subsection. See also
Figure 36 which explores even larger sized problems on the MLCommons set of tasks.

6 Related Work

The idea of meta-learning update rules for optimization dates back to Bengio et al. [1992], Runarsson
and Jonsson [2000] which both learn simple update rules on simple neural networks. More recently,
Andrychowicz et al. [2016] revived the topic by meta-training an RNN-parameterized learned
optimizer on deep learning tasks by backpropogating through the optimization procedure [Maclaurin
et al,, 2015]. Since then, there has been a flurry of new techniques, ranging from learned optimizer
architectures to meta-training algorithms.

Closest to our work is the line of work on hyperparameter-free, neural-network parameterized
learned optimizers trained on large distributions of tasks. Wichrowska et al. [2017] introduced
hierarchical learned optimizers, similar to our work, and meta-trained them on a large distribution
of synthetic tasks. Metz et al. [2020a] train on a more realistic task distribution [Metz et al., 2020b],
with an improved learned optimizer architecture.

In this work, we leverage ES for meta-training [Rechenberg, 1973, Nesterov and Spokoiny, 2011,
Salimans et al.; 2017]. There has been extensive work studying different meta-training techniques
ranging from ES improvements [Maheswaranathan et al., 2019, Metz et al., 2019a, Vicol et al.; 2021],
to reinforcement learning [Li and Malik, 2017a,b], to techniques designed specifically to train learned
optimizers [Lv et al., 2017, Chen et al., 2020].
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Figure 14: VeLO makes efficient use of larger larger batch sizes than hand-designed
optimizer baselines. We show the final loss achieved by Vel.O, and learning rate-tuned Adam,
SGD, or SGDM after a fixed number of examples seen for different batch sizes. For all baselines each
point represents the minimum over a learning rate search. In dashed lines, we show what optimal
batch size scaling would look like (no decrease in performace when increasing batch size). VeLO can
make use of batch sizes up to 10x as large as Adam before seeing performance degradation.

In contrast to general-purpose learned optimizers, task specific learned optimizers have been
proposed in many settings, including chemistry [Merchant et al.; 2021], robustness [Metz et al.; 2019b],
adversarial training [Xiong and Hsieh, 2020], few-shot learning [Ravi and Larochelle; 2016], min-max
optimization [Shen et al., 2021], human motion reconstruction |Girtner et al.; 2022|, unsupervised
learning [Metz et al.; 2018], swarm optimization |[Cao et al., 2019], black box optimization [Chen
et al., 2016], and MCMC sampling [Levy et al., 2017, Wang et al., 2017, Gong et al., 2018|.

Improvements to the LSTM learned optimizer architecture in Andrychowicz et al. [2016] have
also been proposed. Lv et al. [2017] modify the inputs to improve training; Metz et al. [2019a] swap
out the LSTM with an MLP; Premont-Schwarz et al. [2022] introduce the ability to fall back to
a hand-designed optimizer to ensure convergence. Hyperparameter controllers—neural networks
which dynamically set the hyperparameters of existing optimizers—have also been explored [Daniel
et al, 2016, Xu et al,, 2019, Almeida et al., 2021]. Finally, work has been done to meta-learn
symbolic parameter update rules. Bello et al. [2017] use reinforcement learning to learn a policy
which produces symbolic optimizers. Zheng et al. [2022] first meta-train a neural network, and
subsequently distill it to a symbolic form. Real et al. [2020] explores learning not just an optimizer,
but an entire symbolic learning algorithm.

7 Discussion and Outlook

In this work, we demonstrated dramatic improvements in the generality and performance of learned
optimizers, by scaling up meta-training compute and dataset size, and by making architectural
improvements. The resulting learned optimizer, VeLO, has no hyperparameters, yet outperforms
heavily hyperparameter-tuned baselines across more than 80 diverse optimization tasks, including
large published machine learning models.
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7.1 Open Questions

Despite the performance of this optimizer, there are many open questions and clear directions for
improvement. These include: improving the learned optimizer architecture, for instance to leverage
second order or quasi-second order information; using more available information about the target
task, for instance by conditioning on an embedding of the target task’s computation graph; more
control to target both validation and training loss; reverse-engineering the techniques used by the
learned optimizer, e.g. as in | |; and improving the computational
efficiency of meta-training, for instance by using analytic gradients or partial unrolls. See Appendix J
for an extended discussion of these and other open questions.

7.2 Meta-Learned Algorithms are the Future

One of the core lessons from the modern machine learning revolution is that, given enough compute
and training data, learned algorithms can outperform even the most well-motivated hand-designed
heuristics. In this paper, we show that this lesson applies to the parameter update function
used to train a neural network, though the required compute scales are far larger than for most
supervised learning tasks (by a factor of around 100 million). Similar benefits from meta-learning
have been demonstrated in neural architecture search | , , , | and data
augmentation | ) |.

Almost every part of a typical machine learning pipeline is still built out of hand-designed
heuristics, from defining the loss function, to choosing regularizers, to designing training curricula,
to specifying transfer learning procedures. As compute and data continue to grow, we expect that
meta-learned algorithms will replace all of these hand-designed components.
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B Learned Optimizer Architecture

In this section we present the architecture of VeLO. We first present an overview of the hierarchical
structure. We then discuss each component and their input features, as well as discussing connections
to hyperparameter-controller optimizer architectures and discussing optimizer complexity with
respect to the complexity of the underlying model.

B.1 Extended Architecture Overview

Most hand-designed optimizers consist of a handful of element-wise operations and are therefore
relatively inexpensive to compute. Adam | , |, for example, is typically written as
three (coupled) update equations applied independently to each parameter of the underlying model.
Learned optimizers, on the other hand, can make use of more complex functional forms, possibly
parameterized by neural network. While this greater expressivity results in greater representational
power, it can can also be considerably more costly to compute. For learned optimizers to be useful, this
extra compute per-step must be balanced with the improvements in per-step optimization efficiency.
Recently, | | showed that per-parameter learned optimizers can be parameterized by
a extremely small neural network, and thus efficient to compute, while still outperforming tuned
hand-designed optimizers. While these small models are capable of strong performance on single
tasks, we found that they lack the representational capacity needed to perform well across many
tasks (See Figure 17, in particular the MLP LOpt and AdaFac LOpt).

Past work has introduced hierarchy in learned optimizer parameterizations to address this
limitation | , , , |. This hierarchy enables more expressive
representations, while allowing for shared computation across either a full tensor, layer, or the entire
network. Results of the upper level computation are then routed down and treated as conditioning
inputs to the lower levels of the hierarchy. For example, per-tensor computations are fed into the
per-parameter network. While this does greatly increase the capacity (and thus performance) of the
learned optimizer without requiring excessive additional compute, it does not fix the core expressivity
restriction of the per-parameter optimizers, as this per-parameter network would still need to perform
a different computation depending on the conditioning thus potentially requiring a more expressive,
and thus more expensive function.

To address the computational bottleneck at the parameter optimizer level, we propose a new
class of learned optimizer architecture based on HyperNetworks | , |. Our optimizer
consists of a two-layer hierarchy. The upper level acts at the tensor level, and is a recurrent network.
Instead of this tensor-level network passing information to the per-parameter layer as additional
inputs, we instead have the network produce the entire weight matrix of the per-parameter network.
This decouples the computational requirements of the upper and lower layer networks, and allows for
increased expressivity without additional compute cost at the lower level. To make this prediction
easier, we parameterize it as a linear combination of some larger set of per-parameter network
weights.

In the following sections we describe all the details of this model starting with what state it
accumulates iteration to iteration, followed by a description of the per-tensor and per-parameter
networks.
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Figure 15: Visualization of fraction of time left features. These values are fed into the
per-tensor network and are used by the learned optimizer to change behavior in a time dependent
manner.

B.2 Optimizer State: Non-Learned Accumulators

VeLO keeps track of the following information from iteration to iteration. These features are used
by both the per-parameter, and per-tensor network and are updated with each new gradient and
loss value.
e Iteration number. The number of iterations the learned optimizer has been applied.
e Momentum at different timescales. We keep track of an exponential moving average of
gradient values at multiple timescales. We use 3 timescales (0.9, 0.99, 0.999).
e Squared gradients. We track the exponential moving average of the gradient squared,

similarly to what is accumulated in Adam | , |. We track these squared
gradients using a single EMA coefficient of 0.999.

e Adafactor-style accumulators. As in [ | we also track a factorized variant
of the squared gradients | ) |. The size of these accumulators is sub-linear
in parameter count, so we track 3 different exponential moving averages of these values: (0.9,
0.99, 0.999).

e Loss features. We additionally track details about the loss values. This is parameterized
as an exponential moving average of each training loss value at multiple timescales. To be
precise, we construct 10 values between 1 and log(num _steps), and then to determine decay
we use exp(—1/z) where z is each one of these 10 values. Comparing the results from different
timescales will allow our optimizer to react to loss changes over time. We also keep track of a
running minimum of each of the different exponential timescales. See the following section for
how these values are used.

B.3 The Tensor-Level Recurrent Network

The tensor-level network is an LSTM | , |, with 512 hidden units
which operates on features which are broadly reflective of overall training status and bulk statistics

of per-parameter features. These are described below.
e Fraction of training remaining. We use as an input the current training iteration, as
well as the number of target steps to produce a set of values representing a soft progress
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Figure 16: Visualization of the loss features. Results computed when applying a learned
optimizer to the RNNLM_1lmibbytes_Patch32_LSTM128_Embed64 task. (a) We show the training loss.
In blue we show the raw values, which are passed into the learned optimizer. In black we show an
exponential smoothed version with 0.99 decay. (b-e) We show different length scales of the loss
features again where blue is raw values and black is smoothed by a 0.99 decay. First, in (b) we look
at the shortest timescale of loss features. Because there is noise in the underlying loss values, this
value is also quite noisy around 0 meaning in this timescale it is hard to tell if the loss is decreasing
or not. In (c) we see a larger timescale, which is negative indicating the loss lowering until around
5K iterations at which point the loss plateaus (as seen in figure (a)). In (d) we see an even more
smoothed version of this, with a lower maximum value. Finally in (e), one of the longer timescales,
we see a near constant value of -1 indicating that the loss is always going down.

through training. This is implemented by computing tanh(10x (£/7 — s)) where ¢ is the current
iteration, T is the total number of steps, and s is the fraction through training. We used
s €[0.03,0.1,0.2,0.4,0.6,0.8,0.9, 1.0, 1.1] but did not ablate these values. See Figure 15 for a
visualization of these features.

e Loss features. These features enable the optimizer to tell if optimization is converging or
diverging. We leverage both the exponential moving averages of loss, and the running minimum
to construct a loss magnitude-invariant featurization. Values of -1 roughly correspond to a loss
going down, values of 1 mean diverging, and values of 0 mean no change in loss. We have 10
loss timescales, and use pairs of these timescales to construct these features. We visualize 4 of
these features along with the loss values which generated them in Figure 16. For the exact
implementation see the code.

e First and second moment features. We use the variance of each of the momentum
timescales as an input feature, and both the mean and variance of the second moment features.
Each feature z is processed as follows: clip(log(10™8 + abs(10z)), —5,5). This ensures the
inputs to the tensor-level network remain on a consistent scale and appropriate dynamic range.

e Tensor rank. We use a one hot of the rank of the tensor as an additional feature.

For each tensor, we compute these features, which are fixed length, and form a rank 2 array
with a leading "batch" dimension being the number of tensors. Before feeding these values into
the per-tensor LSTM, we seek to “mix” information across the tensors. To do this, we first apply
a small neural network which operates on the feature dimension and consists of 2 linear layers
with 512 units with ReLU activations. Inspired by Zaheer et al. [2017], we additionally mix this
information by taking the max across the number of tensors dimension and adding this value
to the original features projected linearly to 512 dimensions. In code this operation looks like:
Fo(z) + max(o(F1(o(Fa(x)))), axis = 0,keep dims = True), where F; is a linear layer, and o is a
ReLU activation.

The tensor-level model, given the mixed features described above, acts independently across each
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tensor. From this recurrent model, we output a scalar ¢, which is used to modulate the step size for
all tensor elements and a vector, chyper Which is used to linearly interpolate between a meta-learned
collection of weights of the same shape as the per-parameter MLP network.

B.4 The Parameter-Level Network

The per-parameter optimizer we use is based on the optimizer investigated in | |.
The per-parameter weights for a given tensor are computed by taking an un-normalized weighted
average (with weights chyper) of a bank of differently initialized, and meta-learned per-parameter
weights. The output of this is then multiplied by 100, a scaling factor to keep the MLP weights in a
reasonable range at initialization. Because these weights are computed per tensor, each tensor now
has a different set of per-parameter weights.

The per-parameter features are normalized by the second moment across the entire tensor (each
feature is normalized independently) and passed into the weights produced by the tensor-level LSTM
hypernetwork. This produces 2 values: d, m, which are combined (along with the scalar learning
rate ¢y also produced by the RNN), and 2 scaling hyperparameters, both 0.001, chosen to keep the
outputs of this network to a reasonable range, as well as the current parameter norm. In math,
weight update to parameter vector p is: Ap = 0.001 * d % exp(0.001 * 1) |[pl|2

B.5 Comparing our Architecture to Hyperparameter Controllers

Hyperparameter controller-based learned optimizers are another class of learned optimizer archi-
tecture, which aim to automate the tedious tuning inherent to common optimizers

| ], [ ], | |. These optimizers map from training features to the
hyperparameters of chosen optimizers (such as tuning Adam learning rates). One can view our work
as a more complex version of this parameterization. Our HyperNetwork LSTM is producing a small
number of of weights, which are then used throughout the target network much in the same way
hyperparameters act. The main difference, however, is instead of these small number of weights
controlling a hand-designed optimizer, they instead control the weights of a neural network.

B.6 Experimental Validation of Our HyperNet Compared to Past Work

To demonstrate this, we explore training different learned optimizers on a small scale, multi-task
distribution of problems consisting of training a 1 hidden layer, 32 unit MLP on 4 different 8x8
datasets. See the code for more info on these tasks. We show the per parameter optimizers from

| | (MLPLOpt) and [ | (AdaFac LOpt), hand-designed optimizers
(Learnable Adam—Adam where we meta-learn the hyperparameters), hyperparameter controller
learned optimizers (NNAdam | , |), the hierarchical optimizer from [ ]

(RNN MLP LOpt), and our HyperNetwork based learned optimizer (HyperNet LOpt). We show
meta-training learning curves in Figure 17 for each optimizer. We find our HyperNetwork based
optimizer has low meta-loss, implying that this architecture has a higher capacity and thus can learn
a function which performs optimization better. Previously proposed hierarchical learned optimizers
also perform well (RNN MLP LOpt), but in practice are more expensive to compute. For each model
we due a small learning rate search testing half powers of 10 and show performance over 3 random
seeds.
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Figure 17: Compare capacity of different LOpts. We meta-train 6 different learned optimizers
on a mixture of small MLP tasks. We find the hierarchical networks (NNAdam — a hyperparameter
controller for Adam, RNN MLP LOpt and HyperNet LOpt) outperform the non-hierarchical (MLP
— AdaFac LOpt, and MLP LOpt) with our proposed learned optimizer performing the best of all
methods. In the shaded regions we show the min and max performance across 3 random seeds, and
the median in solid.

B.7 Understanding Computational Costs of VeLO

Predicting exact run times of any deep learning system, especially one that leverages a compiler, is
complex. Instead, we designed a simple model for performance based on 3 different components: a
constant execution overhead, per-tensor scaling cost, and per-parameter scaling cost. For further
simplicity we assume a constant tensor count combining both the constant overhead and the
per-tensor scaling. This leaves us with the following simplified model:

time = )\overhead + )\params - params. (3)

To test this model, we run a set of different optimization algorithm (learned and hand-designed)
on a simple set of parameters—three square matrices, each of the same number of rows and columns.
We fit the parameters of this model (Aoverhead and Aparams) using via gradient descent in log space.
Despite its simplicity, our model is well-aligned with the data and strongly predictive.

In Figure 18a we plot our predicted time-per-step for the learned optimizer, SGD, and Adam, as
well as the data. The learned optimizer has both higher overhead, and significantly larger cost per
parameter, as expected. SGD takes 3.4e-11 seconds per parameter, whereas our model is 1.58e-9
seconds per parameter (46x longer). In terms of the constant overhead time, our optimizer has about
2.6 higher overhead. This overhead region dominates below approximately one million parameters.
We expect a better implementation (instead of naively relying upon XLA) will shift this overhead
region. In Figure 18b we look at the effects of changing the size of the per-parameter MLP. As
expected, the cost per parameter grows roughly linearly with the size of the per-parameter MLP.
Finally, in Figure 18c we look at the size of the per-tensor LSTM. As we increase the size, the
per-parameter cost remains constant, though the overhead grows. The impact of this overhead goes
away, however, as the parameter count grows again saturating after around a million parameters.
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Figure 18: HyperNetwork computational costs. We demonstrate the computational costs and
overhead when applying our HyperNetwork based optimizer. For each configuration we show both
empirical measurements computed on a TPUv3 (in solid) and a simple model fit to this data (in
dashed). (a) We show a comparison between VeLO and 2 baseline optimizers: SGD and Adam.
The learned optimizer has a 3x higher fixed cost, and costs about about 50x more per parameter.
Despite this extra cost, however, these optimizers can still be used efficiently in many models. See
Section B.7. (b) We visualize the costs of our learned HyperNetwork when varying the number of
parameters the per-parameter MLP has. We find adding additional parameters in this way does
not increase the fixed costs, but does predictably increase the cost per parameter. (c) We visualize
the costs of varying the hidden size of our per-tensor LSTM in the learned optimizer. Because we
are leveraging a hierarchy, this only increases the fixed costs, but does not effect the per parameter
costs.

This means the per-tensor network can use more and more compute without additional overhead as
the model it is training grows.

Distributed optimization. The computational costs can further be reduced by distributing the
optimizer computation. If one is performing model or pipeline parallelism optimizer computation
only happens on the devices where the corresponding weights are located, and thus a factor of number
of devices will be saved. If using data parallel training, it is feasible to distribute the optimizer
computation via Zero style data parallelism [Rajbhandari et al., 2020]. As machine learning models
continue to grow in parameter count, the hardware to train these models also is growing. As a
result, the number of parameters on each device is not exploding — in fact it might even be shinking
making the overhead of learned optimizers less and less and thus a more appealing choice compared
to hand-designed methods.

Extrapolating optimizer overhead. Finally, we extrapolate our results to explore the feasi-
bility of training extremely large models. In particular, we will discuss the PaLM 540B parameter
model [Chowdhery et al.; 2022].

PaLM is trained with 540e9 parameters. Training is done over 2 TPUv4 pods each with 3072
chips. Data parallelism is used across pods, and within pods 12-way model parallelism and 256-way
data parallelism is used leveraging Zero style data parallel parameter sharding meaning weights
are spread across all 3072 chips. This means there are 540e9/3072 = 176e6 parameters per device.
Using our model, we can estimate the cost to run the optimizer per device would be approximately
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0.3 seconds (On TPUv3). The 540e9 Palm model takes 17.6 seconds to perform one step on TPUv4?
and thus using a learned optimizer will cost roughly 2% extra compute.

Overhead in practice. In practice, we find optimizer overhead ranges from minimal, to 2x
the cost of training depending heavily on model and implementation. Most of the poor performing
models are from sub-optimal implementations. Many multi device training implementations do not
leverage any parameter shading whatsoever. Instead, all parameters are stored on each device, and
optimizer computation is duplicated on each device. To make matters worse, as these models grow,
the batch size of some of our tasks shrinks making the optimizer overhead even higher. As model’s
grow and deep learning software matures, we expect these issues to go away.

In the near-term, however, if wall-time performance is bad, one can always explore using a larger
batch size. As shown in Section 5.2, our optimizers continue to work well with increased batch sizes
even when hand-designed methods falter.

More efficient implementations. Based on early profiles of VeLO, there is still plenty of
room to optimize. Because our per-parameter are extremely small, often it is faster to not leverage
dense matrix multiplication hardware in modern accelerators. This was briefly explored in

[ | where they showed considerably faster run times for smaller sized per-parameter models.
When manually writing out matrix multiplications in this way, we also can benefit from unstructured
sparsity in the weights of the per-parameter model.

Based on early profiling, we found XLA does not generate as efficient as of a kernel as possible
requiring at least 2x the amount of memory reads as required. Further improvement there will lower
our costs.

Finally, all of our experiments make use of float32 accumulators when past work has already
demonstrated effective use of lower precision gradients, momentum, and second moment accumulators.
We expect we can also perform all the computation inside the learned optimizer in lower precision as
well. Because we are using ES to train, rather than backprop gradients, meta-training with these
lower precision types should be trivial.

C Data: A Large, Diverse Distribution of Meta-Training Tasks

Training effective deep learning models requires large and diverse datasets. For example, large-scale
language modeling networks leverage data from the entire internet for training. When training a
learned optimizer there is no such ready-made distribution of tasks. To make matters worse, we
cannot possibly cover all possible tasks, as some tasks are far to computationally intensive to be used
for meta-training. In this work, our strategy is to build a procedural generative process for machine
learning tasks, as well as a method for sampling only tasks that are not prohibitively expensive to
meta-train on.

Following both past work in meta-learning | , , , |, we train
VeLLO on a diverse distribution of data in the hopes to generalize to unseen tasks. This distribution
is composed of a mixture of parametric tasks definitions covering:

1. Image classification: MLPs, convolutional networks, residual networks, and Vision Trans-

formers.

2. Image generative modeling: MLP-based auto-encoders, and MLP-based variational auto-

encoders.

3. Language modeling: recurrent networks and Transformers.

3From personal correspondence with authors.
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4. Training learned optimizers.

These base tasks are combined with randomized generation of elements such as depths, widths,
datasets, training losses, and many other elements of the training problem. We specify these
elements through a task configuration language, which we discuss in the next subsection. In the
remainder of this section we describe the components which are configured starting with different
parametric task distributions, followed by a form of data-augmentation (task-augmentation) to
further increase diversity. Throughout the rest of this section, blue text denotes links to the open
source implementation.

C.1 A Configuration Language for Tasks

To define tasks, we make use of a configuration language built on top of Gin. This configuration
language lets us instantiate instances of objects and specify parameters values without actually
constructing these objects. These object specifications can also be nested. As an example, the
following is a configuration of a MLP with 2 hidden layers, trained on 8x8 images.

CFGObject (obj="ParametricImageMLP",
kwargs={"hidden_layers": [128, 128],
"num_classes": 10,
"datasets": CFGObject(obj="fashion_mnist_datasets",
kwargs={"image_size": (8, 8), "batch_size": 64})})

Here, both ParametricImageMLP and fashion_mnist_datasets both refer to python functions
which are called with the provided kwargs upon construction.

Leveraging a configuration language provides a number of benefits. First, it enables decoupling the

code which creates tasks from how the task is configured. This means we can sample configurations,
rather than sampling entire tasks. Second, these configurations themselves can be used as inputs
to other machine learning systems. In this work, we train machine learning models on these
configurations to produce an estimate of the run time for rejection sampling (see Section C.4).
We also experimented using these configs to learn value functions—functions which map from
configuration to entire training curves — though we could not make this reliable enough for use in
this work.
Task vectorization. For tractable meta-learning, it is necessary for each individual training
problem to be efficient. These problems are trained over and over again with a learned optimizer to
estimate meta-gradients and thus this is the main computational cost. While this is accomplished
in part by focusing on small tasks, naive execution of task sampling still results in far too much
computational overhead, especially on ML accelerators which excel at performing large linear
algerbra operations. To combat this we leverage JAX’s vectorization and compilation features. To
vectorize training of tasks, the computations performed in each task must match, so we are only
able to vectorize certain elements of task configurations. We refer to the configuration elements
that are vectorized over as dynamic configuration elements, and those not vectorized over as static
configuration elements. Thus, we have a two types of task components: configuration elements which
can be vectorized such as network initialization and activation functions?, and configurations which
cannot be vectorized such as number of hidden layers or units. Each task family defines variations
in tasks covering both kinds of configurations.

4Non-linearities in neural network are cheap and thus to vectorize we compute multiple activations for all tasks
and only select one to be used.
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C.2 Shared Components Used to Construct Task Distributions

Before describing each different kind of task we construct, we describe several shared components
which are used across multiple task kinds. The code for these shared components is available here.

C.2.1 Initializers

For some tasks, we sample one initialization function for all tensors in a network. The different kinds
initializers we sample from are:

1. Orthogonal initialization.

2. Uniform distribution with min and max of /3/fan_in.

3. Normal initalization based on /1/fan_in.
Here, fan_in denotes the number of incoming connections to a nonlinearity (corresponding to, for
example, the width of a linear layer). Additionally, we rescale the initialization by a random value
sampled uniformly between [0.5, 2.0].

C.2.2 Activation Functions

Activation functions are sampled from ReLU, ReLU6, SELU | ) |, tanh, sigmoid,
SiLU | , |, swish | ; |, GELU |

, |, and leaky ReLU | , |. In addition to these more standard activation
functions we also include cos and sin as activation functions | ) |. Because activation

functions are cheap to run, we select which activation to run dynamically "in-graph" with XLA
conditionals via jax.lax.cond.

C.3 Base Task Families

In this subsection we describe the base tasks used in task construction, and their static and dynamic
configuration elements. These configurations serve as a base which we then apply task-augmentations
to.

C.3.1 Fully Connected Networks

These tasks consist of MLP classifiers trained on flattened image datasets.
Static configuration:
1. Hidden size: log uniform, between 8 and 128.

2. Number of layers: uniform, between 0 and 4, inclusive.

3. Image size: log uniform, between 4 and 32.

4. Batch size: log uniform, between 4 and 512.

5. Dataset: uniform, between MNIST | ) |, Fashion MNIST | , |, CI-
FARI10 | , |, CIFAR100 [ , |, or 16x16 Imagenet |

, 2015].

Dynamic configuration:
1. Initialization function, sampled from those in Section C.2.1.
2. Activation function, sampled from those in Section C.2.2.
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C.3.2 Convolutional Networks

These tasks consist of image classification problems trained on convolutional neural networks.
Static configuration:
1. Hidden size: log uniform, between 4 and 64.
Number of layers: uniform, between 0 and 3, inclusive.
Number of layers with a stride of 2: uniform from 0, 1, or 2.
Image size: log uniform, between 4 and 32.
Batch size: log uniform, between 4 and 512.
. Dataset: uniform, between MNIST, Fashion MNIST, CIFAR10, CIFAR100, or 16x16 Imagenet.
Dynamic configuration:
1. Initialization function, sampled from those in Section C.2.1.
2. Activation function, sampled from those in Section C.2.2.

o Ut 0o 1

C.3.3 Auto-Encoders

These tasks consist of deterministic auto-encoders parameterized by MLP and trained with mean
squared error.
Static configuration:
1. Hidden size: log uniform, between 8 and 128.
2. Number of layers: log uniform, between 0 and 4, inclusive.
3. Image size: log uniform, between 4 and 32.
4. Batch size: log uniform, between 4 and 512.
5. Dataset: uniform, between MNIST, Fashion MNIST, CIFAR10, CIFAR100, or 16x16 Imagenet.
Dynamic configuration:
Initialization function, sampled from those in Section C.2.1.
Activation function, sampled from those in Section C.2.2.
Log loss: whether or not to train with log loss.
Center data: whether or not to rescale data to lie in -1 to 1, rather than 0 to 1.
Constrain output: whether or not to clamp the output with a sigmoid or tanh function, or to
directly use the output of the final linear layer.

ANl

C.3.4 Variational Auto-Encoders

These tasks are based on variational auto-encoders | , |. They construct
a generative model with a quantized normal observation model and are trained with the negative
evidence lower bound (ELBO).
Static configuration:
1. Encoder hidden size: log uniform, between 4 and 128.
Decoder hidden size: log uniform, between 4 and 128.
Number of encoder hidden layers: uniform, between 0 and 4, inclusive.
Number of decoder hidden layers: uniform, between 0 and 4, inclusive.
Latent dimension: log uniform, between 2 and 128.
Image size: log uniform, between 4 and 32.
Batch size: log uniform, between 4 and 512.
Dataset: uniform, between MNIST, Fashion MNIST, CIFAR10, CIFAR100, or 16x16 Imagenet.

XN O W
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Dynamic configuration:

1.
2.
3.
4.

Initialization function, sampled from those in Section C.2.1.

Activation function, sampled from those in Section C.2.2.

A boolean choice to center input data, or not.

Per-dimension loss: whether or not to use a per-dimension loss, or the sum over all dimension
loss.

C.3.5 Residual Networks

These tasks consist of small residual network-style | ) | models for image classification.
In practice, these models are considerably smaller than even ResNet18.
Static configuration:

1.

© oo N

10.

Max blocks per group: The ResNet structure is divided into 4 stages—between each stage the
image is downsampled. We (log uniformly) sample the maximum number of ResNet blocks for
each group between 1 and 10.

. Blocks per group: Using the max value above, we uniformly sample a number of blocks for

each group for each of the 4 blocks.

. Width pattern: We sample the multiplier on how large each block is. In standard ResNet

architectures, the hidden size doubles each block. We uniformly sample one of the following
scaling factors: [(1,1,1,1),(1,2,4,8),(1,2,2,4),(1,2,2,2),(1,2,4,4)].

Base hidden size: We sample the base hidden size (multiplied by the above width pattern for
each group) log uniformly between 8 and 256.

Initial convolution kernel size: Either 3, 5, or 7.

Initial convolution channels: log uniform, between 8 and 64.

Include initial max pool: uniform, either true or false.

Image size: log uniform, between 8 and 64.

Batch size: log uniform, between 4 and 256.

Dataset: uniform, between MNIST, Fashion MNIST, CIFAR10, CIFAR100, or 16x16 Imagenet.

Dynamic configuration:

1.

Activation function, sampled from those in Section C.2.2.

C.3.6 Recurrent Networks

These consist of language models parameterized by an RNN.
Static configuration:

1.

Uk N

6.
7.

RNN size: log uniform, between 8 and 256.

Embedding size: log uniform, between 8 and 256.

Batch size: log uniform, between 4 and 512.

Sequence length: log uniform, between 4 and 512.

Dataset: either LM1B | , | or Wikipedia english | | with either bytes
or 32K vocab size.

Recurrent cell type: uniform, between a vanilla RNN, LSTM, or GRU | ) |.
Vocab size: If the bytes dataset is not being used, we take the 32K vocab size and truncate it
to a smaller size sampled log uniformly between 100 and 10K.

Dynamic configuration:

1.

Initialization function, sampled from those in Section C.2.1.
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C.3.7 Transformers

These consist of language models parameterized by a Transformer | , .
Static configuration:

1.

NGtk N

Model dimension divided by head dimension: log uniform, between 8 to 128.

Number of heads: log uniform, between 8 and 128.

Number of layers: log uniform, between 1 and 8.

Batch size: log uniform, between 4 and 512.

Sequence length: log uniform, between 4 and 512.

Dataset: either LM1B or Wikipedia english with either bytes or 32K vocab size.

Vocab size: If the bytes dataset is not being used, we take the 32K vocab size and truncate it
to a smaller size sampled log uniformly between 100 and 10K.

Dynamic configuration: No dynamic configurations are specified for this task distribution.

C.3.8 Vision Transformers

We use Vision Transformers built from the vision_transformer package .
Static configuration:

1.
2.
3.

® NSO

9.
10.
11.

Number of layers: log uniform, between 1 and 16.

Number of heads: log uniform, between 1 and 16.

Hidden size per head: if number of heads is <4, we uniformly sample between 8 and 64,
otherwise we uniformly sample 8 through 32.

MLP dimension: we sample on a log scale between 32 and 512.

Image size: log uniform, between 4 and 64.

Batch size: log uniform, between 4 and 256.

Dataset: uniform, between MNIST, Fashion MNIST, CIFAR10, CIFAR100, or 16x16 Imagenet.
Patch size: uniform, between 2, 4, 8, 12, or 16.

Dropout: used with 70% probability.

Dropout scale: uniform, between 0 and 0.8.

Dropout on attention: uniform, between 0 and 0.8 on a log scale.

Dynamic configuration: No dynamic configuration for this task distribution is used.

C.3.9 Learned Optimizer Training

Finally, we have a distribution of tasks that resembles training learned optimizers. This task
distribution was introduced in the hopes that we could use our learned optimizer to train themselves.
Static configuration:

1.

ot

Learned optimizer architecture: Either meta-learning the Adam hyperparameters, the SGD
hyperparameters with and without momentum, the MLP based learned optimizer from |
|, and the MLP based learned optimizer from | , |.

)

. LOpt hidden size: If using an MLP LOPT, the hidden size is sampled on a log scale between 2

and 512.

LOpt hidden layers: If using an MLP LOPT, the number of layers is sampled on a log scale
between 1 and 4 on a log scale.

Two step scaling multiplier hyperparameters: sampled between le-5 and 1 on a log scale.

. Number of inner training steps: sampled from 1 to 100 on a log scale
. Outer batch size: between 1 and 8 on a log scale.
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Figure 19: Time per step of sampled models. In each color, we train and time 1024 different
configurations and measure the time per iteration. The gaps / empty space denote if a model ran
out of memory, or was otherwise invalid. We find a huge variability in run times across the sampled
task distributions. We see both large variability both between different kinds of tasks (different
colors) and within each task family.

7. Target task distribution: We sample a task from the MLP image classification distribution of
tasks described in Section C.3.1.
Dynamic configuration:
1. The dynamic data corresponding to the task sampled from C.3.1.

C.4 Controlling Task Size

The speed of meta-training is fundamentally limited by the size of the underlying tasks being trained
to compute gradient estimates. As such, it is crucial to be able to sample tasks based on the run
time of the task. To demonstrate the impact of this, we plot the measured run times of 1024 tasks
per base task family in Figure 19. One can see up to 4 orders of magnitude variability in the run
times of tasks, which would correspond to dramatically slower meta-training.

To sample only tasks of appropriate duration for meta-training, we need to compute the run
time of a particular task configuration. Directly timing a given configuration, while simple, is
computationally too expensive as the compilation of this task can take up to a couple minutes while
the actual computation can take seconds.

Instead, we train a neural network model to approximate this computation for us. This is done
by first randomly sampling tasks (approximately 10,000 tasks), and training a network which maps
from task configuration to measured run time. Once trained, we can use our learned models, to
estimate timings in only a couple milliseconds. The structure of this time predicting network follows.
A network for run time prediction. This network maps from a potentially nested configuration
to a single floating point value representing the predicted run time. We expect the specifics of this
functional form to be relatively unimportant as long as the function has access to all the information
from the configuration.

For our implementation, we flatten the configuration into a list of key, value pairs. The keys,
which contain a string name of the argument, are then hashed, and looked up in an embedding table
to be converted to a floating point vector also contains a string, that is hashed and looked up as
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well. If the value is a number, it is normalized based on the min and max of the values seen for that
key. This leaves us with a rank 2 array with one dimension being the number of configurations key
value pairs, and a second dimension being the feature dimension of the embedding.

This data is then normalized based on a running min and max seen during training and fed into
a neural network which does deep set-style operations | , | along the key value pairs
dimension, and then ultimately is reduced to a single, fixed length feature vector. Another neural
network is applied to this to create a final prediction. We train this model with mean squared error
in log space with Adam monitoring a validation set of tasks to ensure we do not over-fit. We train
one of these models for each task family defined in Section C.3. The pre-trained run time predicting
models used in this work are also open source and can be found here.
Learned models to predict if a task will run or not. Similar to the previous 2 sections, we
also train a set of models mapping from configuration to a binary prediction of if the configuration
would result in a valid task. This catches potential issues ranging from invalid sizes or strides for a
convolutional network, to running out of memory for all problems.

C.5 Task Sampling and Augmentations

The meta-training distribution is defined by a sequence of sampled tasks and task transformations.
First, we seek to sample a set of smaller run time tasks to make meta-training tractable. To do this,
we sample a max run time of either 2e-5 seconds per step with probability 0.65, 1e-4 with probability
0.3, 4e-4 with probability 0.1 and 1e-3 with probability 0.05. We use these thresholds, along with the
learned run time models defined in Section C.4 to sample tasks that run within this amount of time.
Not all task families have tasks which run in some of the smaller amount of times. If the time is less
than le-4 we sample a task uniformly from the image MLP tasks, image convolution tasks, image
auto-encoding, image VAE, and the VIT models. If the run time is greater than or equal to le-4 we
additionally add in the option to sample from the RNN language models, the Transformer language
models, image ResNet models, and the learned optimizer tasks. See Figure 19 for a visualization of
these run times, and how these cutoffs were determined.

Task augmentation. Data augmentation has proven incredibly successful at aiding generalization
of supervised machine learning models | , | as well as to encourage generalization
in robotics tasks | , , , , , |. To further
increase diversity of our distribution of tasks apply a similar idea and construct task augmentations
which generate new, transformed tasks which have different optimization properties. As discussed in
Section C.1 these augmentations are configured with both static and dynamic configurations. We
use the following augmentations when meta-training.

1. Re-parameterization of weights. We scale the task initialization by some constant, c.
Before using the weights, we multiply by 1/c. This leaves the function expressed by the
initialization the same, but changes the optimization dynamics with adaptive optimizers. This
is similar to what was done in | ) |. We sample the form of re-parameterization we
use uniformly from: [None, None, global, global, tensor, tensor, parameter|. If None, we use
no re-parameterization. Otherwise, we re-parameterize the weights of the target model either
globally, different scaling for each tensor, or different scaling for each parameter. The size of
the scaling is also sampled. First we sample the ranges: either (0.001,1000), (0.01, 100), or
(0.1, 10), and then use this single range to sample each of the different ranges for each tensor
or parameter.
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D

. Evolution gradient estimation. With 8% probability we estimate gradients of the inner

task with ES | , |. We log uniformly sample the standard deviation of
sampling between 0.001 and 0.1, and the number of antithetic pairs to be either 1, 2, 4, 8, or
16.

. Batch size reduction. We add a task augmentation to reduce batch size with 20% probability,

and reduce the batch size by a sampled value between 0.01 and 1.0.

. Lower precision training. With 20% probability we lower the floating point precision of the

model to bfloat16.

. Gradient normalization. With 5% probability we normalize the gradients of the inner-

problem.

. Directional gradient subspace. With 8% probability we use the gradient to compute some

number of directional derivatives and average these. We log uniformly sample the number of
directional derivatives to be between 1 and 1024. Additionally, before averaging, with 50%
probability we ignore the magnitude of this directional gradient and only use the normalized
direction. This modification is meant to resemble the types of gradient estimates computed
with ES—but are much cheaper to compute.

Asynchronous gradients. With 5% probability we add an artificial delay between when
gradients are computed, and when they are applied to emulate asynchronous training. We log
uniformly sample the delay between 1 and 8 steps.

Meta-Training

In this section we describe our meta-training procedure. First, we discuss our meta-objective and
gradient estimation strategy, followed by detailing our curriculum strategy for training, and a
discussion on multi-task training.

D.1 Meta-Objective

The meta-objective is the objective which we seek to minimize in meta-training, and defines the
performance of our learned optimizers. In our work, our meta-training objective is the training loss
computed at the end of inner-training. In an effort to increase generality, this objective is computed
in expectation over several sampled quantities:

1.
2. Task dynamic configuration. A sample of configurations which can be vectorized over.

3.

4. Randomness in task. Any randomness involved when training the problem (e.g. batches of

Task static configuration. A sample from the distribution of tasks defined in C.5.
Task initialization. Initialization of the inner-parameters for a meta-training run.

training data, or dropout).

Inner problem length. The number of steps the inner problem is trained for which is
sampled from a log uniform distribution between 200 and 20K early in training, and 200 and
200K later in training.

Data used to calculate meta-loss. We use additional batches of data at the end of
inner-training to estimate the meta-loss.
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D.2 Meta-Gradient Estimation

To estimate gradients of the meta-objective, we leverage ES | , | with antithetic
samples | , |, and share as much randomness between pairs as possible to further reduce
variance. This includes initializing the target tasks with the same parameter values, as well as using
the same batches of data for each antithetic pair and the same batches to evaluate performance at
the end of training.

We opt for ES rather than a more sophisticated method such as Truncated ES | , ],
Persistent ES | , | or hybrid ES/Backprop methods | , | for simplicity,
and lower communication overhead between machines in the cluster. Additionally, non-truncated
methods are also more amenable to target the loss at the end of training, rather than average loss.

D.3 Curriculum and Meta-Generalization

Meta-training on larger scale problems is prohibitively expensive. To save training time, we make
use of both curricula over various meta-training parameters, and the fact that our optimizer can
generalize from smaller to larger sized inner tasks. This property is crucial as it saves orders of
magnitude of compute. To demonstrate this, we show the effect of curriculum over the length of
inner problem in the following section.

Experiment: Curriculum over unroll length. In this experiment, our goal is to train a learned
optimizer to train a distribution of tasks for 2,000 inner iterations. Because computational cost
of computing meta-gradients is proportional to the inner problem length, we can compute meta-
gradients faster with shorter inner-problems at the cost of bias (doing well on shorter problems doesn’t
guarantee performance on longer inner-training time). This bias can be mitigated by eventually
meta-training with problems run for the desired number of iterations. In Figure 20 we show the
effects of two curriculum over problem length where we find faster training. In this example, we only
train targeting 2K steps. This curriculum only becomes more important as we increase this length.
For our learned optimizers, we ultimately target 200K iterations—2 orders of magnitude longer.

D.4 Multi-Task Training

As meta-training a learned optimizer is inherently a multi-task optimization problem, we must
balance the gradient contributions from each task. Unlike many other multi-task problems, there is
both no natural or expected scale for the losses from each task which makes targeting performance
across all tasks difficult. We opt for a simple solution to this problem—simply to normalize the
length of each meta-gradient independently per task making each gradient constant norm. As a
result, the meta-training procedure only depends on the ratios of how tasks are sampled, and is
invariant to the scale of losses for each task. Using this normalization, however, comes at the cost of
losing a well-defined meta-objective, and can even produce non-descent directions when the meta-loss
is stochastic. Nevertheless, we found this method works quite well in practice.

We also experimented with normalizers designed by hand to roughly re-scale losses into a
standardized range. For each task family, we manually define a transformation via trial and error to
keep the loss between -10 and 10. Examples of such a transformation include normalizing by the
number of classes predicted for classification tasks, as well as clipping the max loss. Implementations
of these normalizations can be found in the normalizer function for all task families. Despite the fact
that meta-training with these resulted in worse performance, we find these aggregated normalized
loss values to be useful to monitor the rough performance of our learned optimizer.
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Figure 20: Schedules over unroll length speed up meta-training. (a) we show 3 different
kinds of schedules used when meta-training: A constant schedule of the desired length, a linear
increase for the first 1K outer-iterations, and a 3 part piece wise linear schedule. (b) we show
the resulting outer-learning curves when meta-trained, showing our curriculum choice improves
efficiency of meta-training. On the x-axis we show a compute normalized measure of outer-training
performance.

Finally, we explored normalizers based on the performance of a set of baseline optimizers on a
given task. Because our task distribution does not contain a finite number of tasks, we cannot simply
run these baselines on all problems. Instead, we attempted to train a neural network model to map
from task configuration and baseline hyperparameters to learning curves using an architecture similar
to that described in C.4. While initially promising, this method substantially increases complexity,
and did not outperform the much simpler normalization of gradient and thus we chose not to explore
this direction further even though we believe this is closer to correct solution in the long run.

E Meta-Training Infrastructure

In this section we discuss practical aspects of our distributed meta-training infrastructure. Both
meta-training and evaluating the learned optimizer during meta-training requires significant compute.
Our distributed training infrastructure is built inside Google’s infrastructure. Despite this, all the
code and components we used to meta-train are open source and can be adapted to any distributed
computing engine. One needs a distributed file system (we use Colossus | , |), and some
way to perform Remote Procedure Calls (RPC) (we use Courier | , | which uses the
GRPC library).

E.1 One Learner, Many Workers

The main meta-training set of machines consists of a single learner process which provides an RPC
interface fetching the current learned optimizer weight values, and an RPC interface to receive
meta-gradients calculated with these weights. This interface is defined here. Each worker process
has a collection of different tasks on which VeLO is trained. The worker first fetches the weights
of the learned optimizer, estimates a meta-gradient by training a model, and sends the gradients
back to the learner process. The learner and each worker process run on a single TPU chip. To
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prevent wasted compute, the learner process is always run in a more reliable manner (i.e. dedicated
hardware) so that it will not be preempted.

E.2 Evaluation Clusters

While meta-training, the learner process saves weights of the learned optimizer to the distributed
file system. An "evaluation chief" process monitors this file system, and when a new checkpoint is
found, it enqueues some set of different evaluation configurations on a distributed task queue. These
evaluations are defined by a list of configurations which specify some target model to evaluate, the
target length to train that model, and other information required to for the evaluation. Evaluation
workers (each with a single TPU chip) fetch these tasks, load weights of the learned optimizer, train
this models, and report back the results to the evaluation chief. By distributing our evaluation across
many TPU chips in this way we are able to continuously monitor the performance of our learned
optimizers on hundreds of tasks, greatly increasing our confidence that meta-training is performing
as expected.

In practice, we use multiple evaluation clusters, each of which is running at a different frequency.
These evaluation clusters monitor the performance on the meta-training distribution of tasks for
different length unrolls (1K inner training steps, 10K inner training steps), as well as a subset of
the evaluation tasks described in C. For a full list of these tasks see the code. When we shift from
meta-training 200-20K iterations to 200-200K iterations, we additionally monitor performance after
100K inner-iterations. In total, we reserve around 100 accelerators specifically for evaluation.

E.3 Task Selection and Staleness of Meta-Gradients

The most straightforward implementation of our training infrastructure as we have described it
so far would consist of each worker sampling a new task (both static and dynamic configurations)
i.i.d. from the task distribution after the completion of the previous task. Doing this, however, would
result in a new compilation of the computation graph which takes multiple minutes. This would
be extremely wasteful as the computation itself often only takes a few seconds to run. As such,
we compute multiple gradients for a given static task configuration before sampling a new task®’.
Because dynamic configurations leverage the same compilation, we are able to use different settings
for each computation of these gradient estimates, along with different dynamic task configurations
for each of the vectorized problems we run in parallel. While re-sampling dynamic tasks increases
variation beyond simply evaluating multiple gradients on the exact same task, our sampling scheme
does induce auto-correlation of gradients in time.

Reusing tasks in this way also results in a different problem: machines which sample a fast task
would produce significantly more meta-gradient estimates than machines which sampled a slow task.
This further breaks i.i.d. assumptions and causes yet more gradient correlation resulting in unstable
meta-training. To compensate for this issue, each machine samples more than one task (we use 8
for the majority of our experiments), and when computing meta-gradients cycle through each to
mitigate gradient correlation. As we increase the number of tasks each machine has we will approach
a uniform rate of gradients from each machine by the law of large numbers, though this comes at the
cost of increased compile times. We found 8 tasks balances startup costs (which take approximately

SWe also explored building a large precompiled dataset of tasks, but were unable to load these fast enough from
disk, leading to a similar problem.
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40 minutes) while sufficiently lowering gradient auto-correlation. We additionally resample elements
of these tasks probabilistically so as to ensure coverage of the entire task distribution.

These meta-gradients are all sent to a centralized learner which aggregates them in batches,
and applies weight updates by passing them through Adam. To combat staleness (meta-gradients
computed with old learned optimizer parameter values), we throw out any gradients which have
been computed too far in the past. We find a gradient staleness of approximately 10 to be a good
balance between not throwing away to many of the slower tasks, while also ensuring the gradients
are still useful and not too stale.

Globally-Distributed Workers. The computational load required for meta-learning workloads
is quite different than those of large supervised models and as such we can make use of considerably
cheaper hardware than a dedicated supercomputer. The bulk of our compute infrastructure consists
of TPU chips designed originally for inference scattered across the globe. Thus, we are leveraging
idle compute resources in Google’s fleet, and which are connected via commodity networking (by
data center standards) rather than specialized ICI links in the usual TPU deployments |

, |. As we perform data-parallel training over this cluster (Section E.1), each machine can
operate largely independently. Leveraging this amount of machines is possible due to extremely
low networking requirements when transmitting meta-gradients compared to the costly compute
requirements (training some sampled task with a learned optimizer)®. To account for the large
number of machines as well as to control gradient staleness, we also leverage an extremely large
outer-batch size (up to ~100K) in our largest models. At peak capacity, we use a bit over 4K
accelerators spanning 3 generations of TPU hardware. Meta-training training took approximately
one month.

E.4 Interactive Hyperparameter Tuning

During meta-training, we frequently made modification to the running job. These changes include
increasing the batch size, lowering the learning rate, changing the distribution of inner-problems to
include larger problems, and modifying the maximum staleness. This was inspired by the reported
success of online hyperparameter modification in OpenAl Five | , |.

The exact meta-training was relatively ad-hoc and not easily replicated. Due to the computational
cost, we could only afford to train one model at full scale. Our previous largest model used a fraction
of the total compute. Our training was divided into 4 phases, each using the previous weights as the
starting point. We monitored a variety of losses, as well as qualitatively test our trained learned
optimizers to help us determine if any modifications are needed.

Phase 1: Phase one consisted of the smallest sized problems. We use a total outer-batch size of
131,072 tasks which is made up of 2048 batches of outer-gradients, each of which being the average
of 8 different static configurations, and vectorized over 8 dynamic configurations. We use a learning
rate of 3e-4. This phase lasted for approximately 17 days.

Phase 2: Next, we switch to the mid-sized problem distribution. This was in an effort to better
align the training distribution with more realistic problems as we started to notice meta-overfitting
in evaluations. We additionally switch how gradients are aggregated, resulting in a smaller total
batch size of 40,960, computed with 5120 batches of outer-gradients, where each outer-gradients only
comes from one (possibly duplicated) static configuration, and again is averaged over 8 dynamic
samples.

6 [ | took this further and only transmitted random number seeds and loss values. This is possible
with our implementation, but we found this was actually not needed.
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Figure 21: Meta-training losses based on the hand-designed normalized task losses. Each
phase of meta-training is denoted with a different color. After phase 1 and phase 3, we switch
meta-training distribution so show a new y-axis. As we describe in Section D.4 there is no single
meta-loss to plot. Instead, in these figures we measure the performance of our learned optimizer
applied to an i.i.d. sample of tasks from the meta-training distribution, applied for 10K steps for the
first 3 phases, and 100K steps for the last phase. Losses are first normalized with the hand-designed
normalizers described in Section D.4, and then aggregated with a mean. Each dot denotes the
average over 20 static configurations, with 2 dynamic configurations per static.

Phase 3: Upon noticing divergence in the evaluation tasks, we increased the batch size by a
factor of 2 to 81,920 and reset training to an earlier checkpoint.

Phase 4: Finally, we noticed our learned optimizers performed poorly on long horizon problems.
To solve this, we shifted the max problem length from 20K to 200K. This slowed down meta-training
considerably, but dramatically improved performance in these settings. In this phase we also shifted
the distribution of tasks to even larger problems.

We visualize these different phases in a variety of ways. First, in Figure 21 we show the closest
thing to a meta-loss for each phase of training. In Figure 22 we visualize the evaluation performance
of our learned optimizer on a set of hand-designed tasks which are faster to compute. We visualize
performance at different percentiles of performance. These figures we often used the 10th percentile
to guide much of our development as we found good performance on all tasks was more important
than extremely fast training on a small number of tasks and often generalized better to larger
problems. Finally, in Figure 23 we show statistics from meta-training including the number of
outer-iterations, number of problems trained, and the number of times our learned optimizer has
been applied.

E.5 Areas of Improvement

Our infrastructure is still in its infancy. There are several directions for improvement, which we
detail below.

e TPU utilization. Despite our effort, the efficiency of the matrix multiplication units (MXU)
on the TPU across our cluster is relatively low (<10%). This is due to the mismatch in hardware
design: TPUs are designed for large computations, not small, highly iterative operations. Often
our computations are limited by memory throughput. Counter-intuitively, GPUs are actually
worse as kernel execution overhead dominates, even with automated kernel fusion provided by
XLA. We expect custom kernels, with more operations fused, on GPU would be more efficient
but to our knowledge there is no automated compiler stack that supports this, let alone that is
integrated with JAX. Unlike traditional machine learning, compilers are almost a necessity
given the sheer number of different tasks on which we meta-train.
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Figure 22: Meta-training performance on fast evaluation set of 67 tasks. Each row denotes
a different percentile from top to bottom, 5%, 10%, 25%, 50%, 75%. The settings used to train these
models were changed 3 times, and different hyperparameter value training segments are denoted by
different colors. In black we show an exponential moving average. We can see in phase 2 (orange)
diverging in the lower percentile. As a fix for this we roll back and meta-train with a different
configuration for phase 3.

e Compile time overhead. Each TPU machine compiles its own computation graph. This
means while the compilation is happening no computation is occurring. We explored using an
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Figure 23: Meta-updates, problems trained, and updates computed over meta-training
time. On the top row, we show the number of updates we apply to the learned optimizer weights.
As we modify the batch size, and increase compute amounts the slope of this line changes. Next,
we show the number of inner problems trained. When we increase the horizon length from 20K to
200K (phase 3, red) we see a dramatic slowdown as each task takes longer to train. Finally we show
the number of inner-gradients computed, and the number of times our learned optimizer has been
applied.

additional set of CPU only machines which cross-compiled JAX programs to run on TPU, but
were unable to create a reliable or performant enough system at scale to be useful to our work.

e Sensitivity to cluster status. Because our clusters make use of preemptable hardware and
asynchronous training, the training dynamics can change depending on the state of the cluster.
We tried to mitigate this with larger outer batch sizes and lower staleness tolerance with
mixed success. To make matters worse, these issues only becomes apparent after a long period
of meta-training. We expect further iterations of this infrastructure is needed to be more
synchronous in nature. Doing this, however, will require care, as unlike standard synchronous
training, tasks vary greatly across machines.

F Experimental Details From Main Text

In this section we describe the experimental details of the models presented in the main text.
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Figure 24: Visualization for how loss normalization works. We show normalized loss values of
our learned optimizer on two tasks using the Adam based normalizers. (a,c) we show unnormalized
loss values. (b,d) we show normalized training curves. In gray we show each baseline learning curve,
and in black we show the minimum over all baselines. In blue we see our target optimizer. In panel
(a), it would take approximately 40K iterations for Adam to match the performance of VeLO at 10K
iterations. This corresponds to a normalized loss value (panel (b)) of approximately 4. A value of
1.0 in this normalized view means optimization takes the same amount of time as the best baseline.

F.1 Evaluation Set Normalization

Our normalization scheme is based on the calculation of how long it would have taken to reach the
same loss using a set of baseline optimizers. In the paper body, these baseline optimizers are learning
rate-tuned Adam with learning rates picked every half power of 10. The baseline optimizers are run
for 300K iterations which allows us to measure speedups up to 30x faster when the target model is
run for 10K iterations.

In Section G.12 we also make use of a more sophisticated set of baseline optimizers: learning
rate-tuned Adam, learning rate-tuned Adam with a learning rate warm up of 1K steps followed by a
1/4/t decay (where t is training iteration), Adam with an exponential decay (of rate 7e-5, chosen so
that the learning rate drops 3 orders of magnitude over 100K iterations), and fixed learning rate
RAdam. Each optimizer family is run over 14 learning rates, with 5 random seeds apiece.

We demonstrate how this normalization works in Figure 24 for 2 different tasks. First we load
all baselines, average over the random seeds run, and compute an exponential moving averages to
reduce noise. All these curves are shown in gray in Figure 24ac. Next, we compute the minimum
value at every timepoint (shown in black). The process of normalization is then an interpolation to
this curve.

An implementation of these normalizations can be found here.

F.2 Details on VeLOdrome Evaluation Set

Our full set of tasks has 10 task families:

1. ImageMLP: Image classification with MLP.
Conv: Convolutional neural networks.
ImageMLPAE: auto-encoders with MLP on images.
MLP-Mixer: MLP-Mixer based image classification tasks.
ResNet: ResNet based tasks.

Ol W
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https://github.com/google/learned_optimization/blob/b1d8267c5e513a4112e7422b98bacc16e1f0e844/learned_optimization/tasks/fixed/resnet.py

RNNLM RNN based language modeling tasks.
TransformerLM: Transformer language modeling tasks.
VIT: Tasks which leverage Vision Transformers for image classification.
LOpt: Tasks which train learned optimizers.
10. ESWrapped Other tasks where instead of using gradients with backprop, we use ES.

The test set of problems we evaluate in the paper body (which we refer to as VeLOdrome-83)
consist of 83 tasks from the ImageMLP, Conv, ImageMLPAE, ResNet, RNNLM, TransformerLM,
and VIT tasks described above—it excludes the learned optimization and ES-based tasks, which are
not common training tasks. We also evaluate performance on a full set of 109 tasks (which includes
learned optimization and ES tasks, and which we refer to as VeLOdrome-109), and the results are
plotted in the next section.

Details on best and worst case problems. In Figure 3 we show show results for the

© 0o N o

ImageMLP_Cifar10_128x128_Dropout08_Relu_MSE, ImageMLPAE_Mnist_128x32x128_bs128,
RNNLM_1lmlbbytes_Patch32_LSTM128_Embed64, RNNLM_1m1b32k_Patch32_LSTM256_Embed128

tasks from left to right. These problems were selected by first sorting the normalized performance
and looking at the best and worst performance.

F.3 MLCommons Tasks

Below, we include details on the MLCommons tasks.
Vision Transformer on ImageNet. We test a Vision Transformer trained on ImageNet with
batch size 1024. The implementation and Adam baseline closely follow [ ]. We find
VeLLO minimizes training loss more effectively than all of the 20 random trials, and performs better
on validation loss as well (see Appendix G.7).
ResNet50 on ImageNet. We test a ResNet-50 trained on ImageNet with batch size of 1024. The
model definition follows that in the MLPerf Training Benchmark | , |. We find
VeLLO minimizes training loss as effectively as the best of the 20 random trials, though it doesn’t
generalize as well on the validation set of data.
Machine translation WMT17 German-English with a Transformer. We evaluate a sequence-
to-sequence, Transformer-based translation model trained on German to English from WMT17 |

, | with a batch size of 256. VeLO outperforms all baseline trials, despite their being no
sequence-to-sequence models nor translation tasks in the meta-training task distribution.
LibriSpeech DeepSpeech. We test a DeepSpeech model | , | trained on Lib-
riSpeech | , | with batch size 256 using a ctc loss | , |. The
DeepSpeech model is a bi-directional RNN based architecture with gated recurrent units (GRUs)
incorporating batch normalization. Despite no speech data being used for meta-training, VeLO
outperforms all of the Adam trials.
LibriSpeech Conformer. We investigate a conformer model | , | trained on
LibriSpeech with a batch size of 512 using a CTC loss’). Despite no speech data being used for
meta-training, VeLLO performs comparably to the best Adam trial.

TOur results are based on an earlier version of the model which uses a batch size of 512, a smaller encoder dimension
of 256, and uses a word piece model tokenizer instead of a sentence piece tokenizer.
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Graph neural network (GNN) on molecular property prediction. Finally, we test on a
graph property prediction task, ogbg molpcba | , |, with a batch size of 512. Here we
find VeLLO performs at roughly the 50th percentile of the Adam search space — qualitatively worse
than it performed on all other MLCommons tasks. We hypothesize that this is due to the task being
qualitatively very different than any in the meta-training distribution. VeLO was not trained to
optimize GNNs, nor on any problems involving scientific data or graph data. See Section 4.3.8 for
further exploration of GNN tasks.

F.4 Details on Out of Distribution Problems
F.4.1 NERF

The NERF problems we tested were based off of the JAXNerf package | ) |. We use 2
datasets from the Blender family of data. The code for these tasks is located here. The tasks we
test on are JAXNeRF_ShipBlenderTask and JAXNeRF_LegoBlenderTask.

F.4.2 MLP-Mixer

The MLP-Mixer tasks used are based on code released with | |. We test
on 2 smaller mixer variants both with patch sizes of 16x16. The code and configurations for
our models can be found here. The tasks we test on are MLPMixer_ImageNet64_tiny16 and
MLPMixer_ImageNet64_smalll6.

F.4.3 Object Detection

For the results on object detection, we utilize a re-implementation of Faster R-CNN | ,

| and evaluate using the COCO dataset | , |. By default, we train for 22500 steps.
After 500 steps of linear warmup, the learning is decreased by a factor of 10x after 15000 and 20000
steps. The default optimizer is SGD with a momentum of 0.9. Weight decay of 4e-5 is also utilized.
Models are trained with a batch size of 64.

F.4.4 Large Language Models

The language models are decoder-only Transformers | , | trained on the C4 dataset
| , | using Adafactor | , |. We train using the Pax framework
(a JAX version of [ |). The 100M model consisted of 16 layers with model size 768,

hidden size 3072, and 8 heads, while the 8B model consisted of 32 layers with model size 4096,
hidden size 24576, and 32 heads. All models used a vocab size of 32000, “pre”’-LayerNorm, and ReLLU
activations.

The Adafactor optimizer used in the 100M baselines performed linear warmup to a peak learning
rate of 6.4e-3 over the first 4000 steps (2000 for batch 4M and 1000 for batch 8M) followed by cosine
decay (this schedule was tuned); the optimizer in the 8B baseline performed linear warmup to a
peak learning rate of 1le-4 over the first 4000 steps followed by exponential decay. All Adafactor
baselines used betal of 0.9, Adam decay of 0.99, and weight decay of 1e-3, and clipped gradients to
a norm of 5.0.

Due to Pax’s use of “scan over layers”, VeLLO was forced to optimize each layer independently (i.e.
with no signal from other layers other than the global loss).
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Figure 25: Training Graph NN on chemical material prediction. Naively applying our
learned optimizers, while minimizing training loss well (See Figure 8) do not generalize well. When
leveraging additional gradient clipping, our learned optimizers also generalize better than Adam.

Adding weight decay to VeLO. For larger experiments, parameter magnitudes grew extremely
large, leading to numerical issues. This was resolved by adding in a small amount of weight decay.
As opposed to directly decaying parameter values (as in e.g. AdamW | , D,
we added an auxiliary loss function penalizing the L2 norm of the parameter values. This auxiliary
loss thereby modified the gradients fed into VeLO.

F.4.5 Graph NN

The graph neural networks are 3-layer message passing neural networks. Each node represents an
element; prior to any message-passing, all one-hot nodes are embedded into vectors of size 128. All
edges are embedded versions of the inter-atomic distance with size 128. By default, 2 layer MLPs
with swish nonlinearities process messages, and segment sums are used to aggregate the varying
lengths. To get appropriately-scaled activations after message passing, we also divide messages by
the average length across the dataset. The output arises from a global representation, which is
connected to all edges and nodes and updated at every layer. The Adam baseline uses a constant
learning rate, tuned at every half integer of powers of 10, from le-3 to le-5.

Generalization performance. Graph neural networks also present a difficult test-bed for the
learned optimizers, as these models are out-of-distribution for meta-training and often do not see
monotonic improvements in train-loss corresponding to improvements in generalization performance.
Figure 8 showed that these models are able to perform comparably to Adam on train performance
for these GNNs; however, test set performance lags behind. This can be fixed by clipping gradient
norms such that the maximum norm is le-2 before input to the learned optimizer.

F.5 Details on Optimizers Learn to Make Use of Finite Training Time

A Colab to reproduce these experiments is available here. The MLP and convolutional network tasks
used were ImageMLP_FashionMnist_Relul28x128 and Conv_Cifar10_32x64x64.
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Figure 26: Extending an Adam training run with VeLO. We train an image MLP model
on CIFARI0 for 8,000 steps with Adam with a learning rate of 0.001 ("Adam") and then extend
training for an additional 12,000 steps with VeLO ("VeLO Continuation"). The loss immediately
spikes demonstrating Vel.O’s lack of robustness to begin training from a non-random state. While
the continuation ultimately performs better than continuing with Adam, it performs worse than
training using VeLO from a random initialization for the same number of steps ("VeLO, 12K").

G Extended Experimental Results

G.1 Learned Optimizers Take Smaller Steps for Larger Models

When training models of increasing sizes with hand-designed optimizers one must decrease learning
rate accordingly [[Krizhevsky, 2014, Goyal et al.,; 2017]. We sought to see if VeLO exhibits this
property. To this end, we train a 5 layer Transformer with 32, 128, 256, and 512 (corresponding to
the TransformerLM_LM1B_5layer_<size>width tasks) units with our learned optimizer and monitor
the size of the step taken by the learned optimizer (Figure 27). We find that our learned optimizer
shrinks the step size as a function of model size. Somewhat unexpectedly, we find the gap between
the smallest and largest step sizes grows in the middle of training. This is unlike any hand-designed
optimizers we are aware of.

G.2 Learned Optimizers Leverage Loss Features

Unlike standard hand-designed optimizers, our learned optimizer takes the current training loss
value as a feature. We hypothesized that this would allow the optimizer to detect if it was diverging
and adjust step sizes accordingly. To test this hypothesis, we modify the loss value fed into the
learned optimizer from train loss to validation loss (Figure 28). When the optimizer sees train loss,
it continues to decrease the training loss (overfitting on validation loss). When the optimizer sees
validation loss, however, the loss values at the start of training look similar until overfitting starts
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Figure 27: Step sizes of learned optimizer for different sized Transformers. We train 4
Transformers of varying sizes and monitor the step sizes throughout training. We find the learned
optimizer takes smaller steps as the model size grows larger.
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Figure 28: VeLO uses loss features in sensible way. We train an MLP with 2 hidden layers
of size with 1024 hidden units and either feed in training loss, or validation loss into the learned
optimizer. In (a) we show the training (dashed lines) and validation loss (solid lines) over the course
of training. In (b) we show the average step size taken. When passing in validation loss the learned
optimizer takes smaller steps which we believe slow down learning and thus slow down overfitting.

occurring at which point the learned optimizer adjusts it’s step size and seemingly doesn’t overfit as
much. This figure surprised us, as during meta-training there was no notion of validation loss, but
the ability to prevent overfitting seemingly emerges for free — simply by swapping what the optimizer
sees. This experiment was performed with the ImageMLP_Cifar10_1024x1024_Relu task.

G.3 Learned Optimizers Learn Implicit Step Size Schedule

In the main text in Section 5.1.1, we show how the step sizes change for the

ImageMLP_Cifar10_128x128x128_Tanh_bs64, Conv_Cifar10_32x64x64_batchnorm, and
TransformerLM_LM1B_MultiRuntime_5

tasks. In this section, we additionally show training curves, and the step sizes taken by Adam and
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Figure 29: Step size schedule of learned optimizer. We show training curves, followed by the
mean absolute step sizes for each optimizer and each tensor in the target problem. In the top row
we show a 3 layer MLP with Tanh activations trained on CIFAR100, in the bottom row we show a 5
layer Transformer.

SGDM for reference. Over the course of training, we monitor step size on two problems: a 3 layer
MLP with tanh activations trained on CIFAR100 (the ImageMLP_Cifar10_128x128x128_Tanh_bs64
task), and a 5 layer Transformer with 128 hidden units (the TransformerLM_LM1B_5layer_128width
task). For each optimizer, we monitor the mean absolute step size for each layer independently every
step (Figure 29). We find our learned optimizers first learn a rapid step size increase, followed by
rapid decay, followed by a slow increase until near the end of training where the step size decays
again. This resembles some common practices in modern machine learning—learning rate warm ups
and decays—but the slow increase in step size through the first half of training is something we have
not seen before. The step sizes learned by our learned optimizer are extremely different than both
Adam and SGD with momentum exhibiting much more variability across tensors and in time. In
contrast, the step sizes of Adam and SGDM are relatively consistant both in time, and across the
different tensors.

G.4 Sensitivity to Number of Training Iterations With Longer Horizons

For a large portion of our meta-training procedure we used a sampled inner-problem training
lengths between 200-20,000 iterations. To further test the impact of horizon, we test our learned
optimizers out of distribution on a range of considerably longer horizons up to 100K iterations to
see if this behavior extrapolates (Figure 30, solid lines). For some target tasks, we find our learned
optimizers generalize well to this extended training, while for others we see unexpected behavior and
non-monotonic learning curves suggesting some instability. We discuss two potential workarounds to
this.

First, one can employ gradient accumulation, in particular accumulate 10 iterations worth of
gradients before each step by the learned optimizer. This lowers the max target length the optimizer
sees to 10K iterations (which is inside the meta-training regime) and results in more stable (and
more performant) meta-training curves (Figure 30, top). Second, we can simply fine tune the learned
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Figure 30: Longer horizon meta-training We show training curves for different lengths of inner
training beyond the meta-training distribution. In solid color, we show learned optimizer (color denot-
ing different length of training), and in solid black we show the best of learning rate-tuned Adam. Here
the learned optimizer is applied out of distribution as it was only meta-trained for at max 20K steps).
In dashed we show interventions which make the learned optimizer work for longer horizons. Top:
We show the same learned optimizer, but only applying the learned optimizer every 10 iterations with
gradients accumulated from the previous 10 iterations. Bottom: We show a new learned optimizer,
finetuned to work well up to 200K iterations. This finetuning removes the instability we see in (c)
and dramatically improves performance in (d) and (e). These results are shown (from left to right) on
the following models: A MLP trained on CIFAR10 (ImageMLP_Cifar10_128x128x128_Relu_MSE),
a convnet trained on 32x32 ImageNet (Conv_imagenet32_16_32x64x64), a MLP trained on CI-
FAR10 with batch norm (ImageMLP_Cifar10_128x128x128_BatchNorm_Relu), a smaller Trans-
former on LM1B (TransformerLM_LM1B_MultiRuntime_8), and a different Transformer on LM1B
(TransformerLM_LM1B_5layer_128width).

optimizer on longer horizon problems, 200-200K iterations. While this is quite expensive, it does fix
this problem (results in Figure 30, bottom).

G.5 Effects of Scaling Model Size

In this section we explore how performant VeLLO is as a function of the hidden size of a variety
of different models. We test a 5 layer Transformer with hidden sizes between 16 and 16,384, an
auto-encoder with hidden sizes between 4 and 65,536, and a fully connected network doing image
classification on 16x16 ImageNet with power of 2 hidden sizes between 4 and 8192 (Figure 31). For
each model family, at each model size, we train with learning rate-tuned Adam, taking the best
performing learning rate for each model scale, as well with a single trial of our learned optimizer.
All models are trained for 10K iterations.

For the Transformer problem (Figure 31a), we see a similar slope of performance improvement
scale, but with a constant shift. At the 10 million parameter scale, VeLO optimizes better than the
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Figure 31: Optimizer performance as a function of inner problem scale. In the best case,
our optimizers provide a constant offset in optimization performance. In the worse case, our optimizer
underperforms learning rate Adam. Error bars denote standard error across 5 random seeds.

100 million parameter Transformer with tuned Adam. For the auto-encoder and image classification
network we see a similar shift for smaller models. As the model grows, however, learning rate-tuned
Adam starts to match VeLLO or outperform. We suspect this is due to these large models being
increasingly far from the meta-training distribution.

G.6 Exploration Into Outputs of Per-Tensor LSTM

In this section we probe how the per-tensor LSTM behaves. To do this, for ~100 different, smaller
scale tasks we record the output of the per-tensor LSTM (the components used to linearly interpolate
the per-parameter models) for each tensor, at every iteration. This yields 35 million data points.

First, we subsample these datapoints to 800K for compute reasons, and apply t-SNE [Maaten
and Hinton, 2008]. Once transformed, we plot the results coloring both by task kind (Figure 32)
and by the iteration through training (Figure 33). These figures suggest that this per-tensor LSTM
performs differently for different kinds of problems, and that the behavior of the learned optimizer
(as measured by these per-tensor outputs) varies as a function of time.

G.7 MLCommons: Validation Performance and Hyperparameter Sensitivity

In this section we additionally show validation performance of our learned optimizers on six MLCom-
mons workloads (Figure 34). Despite only being meta-trained targeting train loss, our optimizers
also generalize quite well. We substantially outperform the baseline on ViT and DeepSpeech, match
on WMT17 and Conformer, and perform substantially worse on ResNet50. We hypothesize this
poor performance is due to the limited data-augmentation used in this model.

Next, we show the final train loss of our learned optimizers versus the final loss achieved by each
of the random Adam trials (Figure 35). This view allows a better understanding of the sensitivity to
hyperparameter values and the relative strength of the hyperparameter-tuning free VeLO optimizer.
VeLO outperforms all of the 20 hyperparameter trials for all but the Graph NN task and a single
ResNet50 task.

For all MLCommons figures we make use of this optimizer checkpoint.
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Figure 32: t-SNE of per-tensor LSTM outputs. Colored by task kind. We find similar
tasks are grouped together suggesting similar outputs of the per-tensor LSTM. For a larger size see
https://storage.googleapis.com/gresearch/learned_optimization/figs/tsne_tasks.png
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G.8 MLCommons: Larger Batch Sizes

Next we probe how VeLO behaves at different batch sizes on the MLCommons problems. We take the
same 6 tasks, and train both our learned optimizers, and a tuned Adam baseline at different batch
sizes implemented via gradient accumulation. We test an 8x and 32x batch size. For each Adam
baseline we select the best model from a random grid search of 100 points. The search space searches
for the learning rate in the range [107°,107!] on a logarithmic scale, weight decay in the range
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Figure 33: TSNE of per-tensor LSTM outputs. Colored by training iteration. We
find similar times are grouped together suggesting the outputs of the per-tensor LSTM are similar.
For a larger size see https://storage.googleapis.com/gresearch/learned_optimization/figs/
tsne_steps.png

[1075,1.0] on a logarithmic scale, (1 — 31,1 — 32) in the range [10~3, 1] on a logarithmic scale and the
number of warm up steps as a fraction of the total training steps in the set {0.05,0.1,0.15,0.2,0.25}.
Results are shown in Figure 36.
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Figure 34: Learned optimizer validation performance on six MLCommons workloads.
Our learned optimizers generalize well on most tasks with the exception of ResNet50 where we
severely over fit.

We find in all non cases other than the Graph NN, our 8x batch size outperforms this Adam
baseline. In the DeepSpeech and ResNet models, there is no change in performance suggesting
that our optimizers have a higher critical batch size for these tasks. In 1x, we note our WMT17
performance is below baseline where as in the previous MLCommons experiments we outperform.
We believe this is due to the increased number of trials (100, rather than 20). For the 32x batch size,
both Adam and our learned optimizer performs poorly. Our learned optimizers perform better than
Adam on DeepSpeech, Conformer, and ResNet50, but worse on VIT, WMT17, and the Graph NN.

G.9 Additional Tasks for Batch Size Scaling

In this section we provide additional batch size scaling figures to those already shown in Section 5.2.
Here we test 4 additional models: a ConvNet, an MLP image classifier, an RNN language model, the
2 Transformers already shown, and a small ResNet (Figure 37). For each model we train for a fixed
number of examples while varying the batch size. We find our learned optimizer always outperforms,
or matches the baselines at small to medium batch sizes. In the extremely large batch size setting,
however we find learning rate-tuned Adam often performs best, but again we speculate that this is a
consequence of distributional shift between meta-training and evaluation.
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Figure 35: Hyperparameter sensitivity on six MLCommons workloads.

Hyperparameter trials

(sorted by performance)
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We show the

performance achieved at the end of training with each of the 20 Adam trials along with the
performance of our learned optimizer. In all but OGBG our optimizer is competitive with or
outperforms this baseline.

G.10 300M Language Model Trained on 64 Accelerators

We apply our learned optimizers to training decoder only language model. We leverage a pre-existing
300M parameter, decoder only language model designed after Primer [So et al., 2021] trained on
a data mixture similar to that used in PALM [Chowdhery et al., 2022] implemented in PAX®. Tt
consists of 16 layers, 8 heads per layer, has a model dimension of 768, with a 4x width expansion for
the MLP. We train with Rotary embeddings [Su et al., 2021], and with a 256K vocab size. This
model was trained with a 4x4x4 TPUv4 slice with a batch size of 1,024 sequences of length 1,280,
or approximately 1.3 million tokens with 16-way data parallel and 4-way model parallel training.
For our baseline optimizer, we use AdaFactor’ with a learning rate warm up and decay, and with
learning rate tuned across half powers of 10. Due to implementation details'’, for these experiments
our learned optimizer optimizes each layer independently, and ignores all communication across
layers. Despite this, our optimizer performs comparably to the best trial of the learning rate-tuned
baseline.

Shttps://github.com/google/paxml/

9We use AdaFactor without factorization, the same optimizer used in PALM [Chowdhery et al., 2022].

PAX, leverages "scan over layers" trick to reduce compile times of large models. This adds a restriction that
optimizers be independent per layer.
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Figure 36: MLCommons problems at different batch sizes. We train both our learned
optimizer and Adam with 1x, 8x, and 32x larger batch sizes plotted so that each curve uses the same
amount of examples. In WMT17, the largest batch size learned optimizer scores around 4.7 and
thus is not shown on this figure.
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Figure 37: Performance after training for a fixed number of examples with varying batch
size. We test 6 different tasks. Our learned optimizers perform well on small to medium batch sizes,

but underperform on larger batch sizes.
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Figure 38: 300M parameter, large batch transformer. Our learned optimizer can be used to
train a 300M parameter Transformer on par with learning rate-tuned AdaFactor.
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Figure 39: Finetuning a pretrained learned optimizer on a single problem. We explore
finetuning as a way to specialize a pretrained learned optimizer to a particular task. (a): We show
meta-training curves measured in speedup over Adam. (b): We show inner-training curves from
different points in meta-training. (c): We show the percentage speedup for 4 different sized models.
For (a) and (b), confidence bounds indicate standard error across 5 random seeds.

G.11 Finetuning of the Learned Optimizer on a Single Problem

In some applications, it is desirable to repeatedly train the same model with minor variations—for
example, in continual or online learning in which data is continuously varying. With standard
optimizers, training efficiency may be improved by finding good hyperparameters; in our case, we
can directly finetune VeLLO to a particular task. We finetuned VeLO on a 5 layer, 128 hidden
size Transformer (TransformerLM_LM1B_b5layer_128width) training for 2K inner-iterations. We
performed this finetuning using ES with antithetic samples on 16 accelerators for ~5 days. We used
Adam as our outer-optimizer, and tuned learning rates with half power of 10 resolution and picked
the best value.

In Figure 39a, we show the meta-training curves measured in units of how much much time it
would take Adam to reach this loss value (see Section 24 for more details on this normalization).
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Figure 40: Optimizer performance on 83 tasks with improved baseline. The y-axis shows
the relative number of steps it takes the best of learning rate-tuned Adam, RAdam, and Adam with
2 kinds of learning rate decay to achieve the same loss each optimizer reaches after 10K training
steps. The z-axis shows the fraction of tasks for which the optimizer achieves at least that large a
speedup over the baselines.

Our optimizers start out 3.2 times faster than Adam, and after finetuning reach 4.2 times faster. In
Figure 39b, we show the learning curves for different points in outer-training. Finally, in Figure 39¢
we test if this finetuned optimizer will transfer to similar problems. While we do see more variability,
our finetuning generally improves the performance of a model which has a 4x larger hidden size by
about 10%. This suggests one might be able to finetune on a similar, but smaller task which would
be considerably cheaper.

G.12 Extended Evaluation on Optimizer Benchmark

83 tasks, different normalizer. To measure impact of the normalizer used in the aggregate
task comparisons described in Section 4.1, we replot this result using a different set of baselines
(Figure 40). As described in Sec F.1, we normalize performance of our optimizer with respect to
learning rate-tuned Adam, Adam with inverse square root learning rate decay, Adam exponential
learning rate decay decay, and RAdam. As expected, all values shift down as the speedup shrinks
due to this better baseline. Nevertheless, we find VeL O is still superior over even extensively tuned
methods.

An extended task set of 109 tasks. Next, we shift our attention to looking at all 109 tasks in
our evaluation set. This includes the original 83 tasks presented before in addition to the MLP-Mixer,
NERF, Evolution strategies, and learned optimizer training tasks. We plot both speedup over
Adam, and speedup over the improved baseline in Figures 41 and 42 respectively. While our learned
optimizer performance remains strong, we find there exist some tasks for which we do not perform
well—in particular, VeL.O struggles on ES and learned optimizer training tasks.

Tables of aggregated performance. An alternative view of performance metrics for baselines is a
tabular view of aggregated performance measures. For a given kind of normalizer (either with Adam,
or the extended set of baselines, see Section F.1) we show the mean speedup over this normalizer
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Figure 41: Optimizer performance on 109 tasks. Adam normalized. The y-axis shows the
relative number of steps it takes the best of learning rate-tuned Adam to achieve the same loss each
optimizer reaches after 10K training steps. The z-axis shows the fraction of tasks for which the
optimizer achieves at least that large a speedup over the baselines.
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Figure 42: Optimizer performance on 109 tasks. Adam with LR schedule 4+ RAdam
normalized. The y-axis shows the relative number of steps it takes the best of learning rate-tuned
Adam, RAdam, and Adam with 2 learning rate decays to achieve the same loss each optimizer

reaches after 10K training steps. The z-axis shows the fraction of tasks for which the optimizer
achieves at least that large a speedup over the baselines.

(va norm(z;)/N, where z; is the performance for a particular task, and N is the total number of
tasks), and the mean of the reciprocals ((1/N) va 1/norm(z;)). We see this value analogously to
the “cost” to train these models. If we are 2x faster than the baseline, it would cost 0.5 the compute.
Averaging in this space puts more weight on poor performing tasks. To prevent infinities/extreme
sensitivity to outliers both of these means are clipped per task. In the speedup variant (in which we
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average per-task “speedups’), we clip to at most 30x faster than Adam. In the cost variant, we clip
the max cost to be 10. Next we include a variety of percentile based measurements reporting the
speedup for a given percentile of tasks. We include 5%, 10% 25%, 50%, and 75%; note that the 50%
quantile has better outlier robustness than the mean.

We include 4 tables in total containing this data with different normalizers, and different number
of hyperparameter trials considered. For normalizers, in Table 1 and Table 2 we use LR-tuned Adam
to normalize our runs, and in Table 3 and Table 4 we use the extended set of baseline optimizers for
normalization purposes (LR-tuned Adam, RAdam, Adam with reciprocal sqrt LR decay, and Adam
with exponential LR decay).

In Table 1 and Table 3 we only compare to baselines which use a single trial. For LR-tuned
baselines, this means a single learning rate is used per row. We do not include all 15 learning rates
for clutter and instead opt to show 2 values—one which performs best in the mean speedup, and a
second which performs best on the median performance. If these are the same learning rate, we also
include the second best learning rate as measured by the median. For the OptList baseline, we simply
use the first hyperparameter in the list of hyperparameters. For NAdamW we do a similar procedure
to that of learning rate-tuned optimizers to select 2 different hyperparameter configurations.

In Table 2 and Table 4 we show baselines consisting of taking the best performance from multiple
optimizer trials. This is analogous to hyperparameter tuning. We show the best performance of
learning rate-tuned Adam, the first 5 and 10 values from OptList, and all 1K trials from NAdamW.
Next, we show even more aggregation including the best of all shampoo models, all non-shampoo
learning rate-tuned models, all learning rate-tuned optimizers, and finally a massive aggregation
over all baselines we tried. Next, we include ensembles of learned optimizers. These are learned
optimizers trained throughout this work including different meta-training configurations and different
checkpoints throughout meta-training. See here for the full list we evaluate with. And finally, to get
a sense of the best possible performance, we include the best performance over all optimizers we
evaluate.

There are several takeaways from this view of the data:

1. On average, VeLLO is more than 7x faster than learning rate-tuned Adam. The best of an

ensemble of learned optimizers is more than 11x faster than learning rate-tuned Adam.

2. Our single trial learned optimizer performs well on average. It outperforms every other single
model by a large margin in every category except for fifth percentile performance, suggesting
that there are a handful of problems on which VeLLO doesn’t do well.

3. Our single trial learned optimizer does well compared to multiple trial baselines though
the gap between the baselines shrinks. On average, we do not yet outperform the extensive
hyperparameter tuning with thousands of trials, although we emphasize that this is an extremely
high bar.

4. Ensembles of learned optimizers work extremely well, suggesting that different learned opti-
mizers are better at different tasks. We interpret this result as a demonstration that further
gains with learned optimizers are possible.

5. Shampoo, in general, performs quite well overall compared to all other Adam-like optimizers.

6. Levering both learned optimizers and hand-designed optimizers (Best Everything) results in
an additional improvement bump suggesting that further improvement can be made.

Learning curves for all tasks. Finally, we include learning curves for all tasks and many baseline
optimizers (Figures 43-46). We do not include SM3 or Shampoo with AdagradNormalized grafting
due to difficulty finding a legible color scheme with more than 20 values. All models are averaged
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Table 1: Single trial optimizers. Normalizer computed with LR-tuned Adam.

Name Trials AvgSp Avg1l/Sp 5% 10% 25% 50% 75% H
Adam LR=0.003 1 0.64 3.24 0.01 0.03 0.24 0.72 1.00
Adam LR=0.001 1 0.67 2.68 0.09 0.15 035 0.64 1.01
AdaBelief LR=0.001 1 0.75 2.59 0.07 0.14 035 076 1.05
AdaBelief LR=0.0003 1 0.57 3.23 0.10 0.14 0.21 0.53 0.81
SGD LR=0.3 1 0.47 5.22 0.00 0.00 0.05 0.27 0.79
SGD LR=0.1 1 0.49 5.61 0.00 0.00 0.06 0.16 0.68
SGDM LR=0.1 1 0.51 4.68 0.00 0.00 0.07 0.36 0.83
SGDM LR=0.03 1 0.61 4.81 0.00 0.00 0.08 0.34 0.87
RMSProp LR=0.001 1 0.44 4.18 0.00 0.07 0.17 0.36 0.65
RMSProp LR=0.0003 1 0.65 4.48 0.06 0.08 0.15 0.31 0.60
SM3 LR=0.03 1 0.23 5.89 0.06 0.07 0.11 0.18 0.29
SM3 LR=0.01 1 0.24 6.44 0.06 0.07 0.09 0.15 0.32
SM3beta2=999 LR=0.001 1 0.49 3.52 0.05 0.12 0.21 0.37 0.72
SM3beta2=999 LR—=0.003 1 0.43 4.55 0.00 0.02 0.10 0.36 0.64
Yogi LR=0.01 1 0.81 3.52 0.00 0.00 0.19 0.67 1.02
Yogi LR=0.003 1 0.73 3.38 0.02 0.08 0.21 0.62 0.98
RAdam LR=0.003 1 0.89 3.06 0.00 0.06 0.33 0.82 1.17
RAdam LR=0.001 1 1.17 2.32 0.10 0.20 0.36 0.80 1.09
Lamb LR=0.003 1 1.28 2.56 0.01 0.10 0.36 0.70 1.25
Lamb LR=0.001 1 1.43 2.52 0.0 0.19 0.32 0.62 1.01
Lars LR=1 1 0.85 2.75 0.01 0.13 0.31 0.52 1.09
Lars LR=0.3 1 0.94 3.83 0.07 0.10 0.20 0.39 0.67
Fromage LR=0.01 1 0.54 4.13 0.03 0.04 0.16 0.35 0.73
Fromage LR=0.003 1 0.32 6.00 0.00 0.02 0.07 0.16 0.50
AdamW LR=0.001 1 0.78 2.38 0.08 0.17 0.40 0.83 1.05
AdamW LR=0.0003 1 0.90 3.16 0.11 0.13 0.23 0.52 0.83
Adafactor LR=0.01 1 1.85 1.80 0.22 037 0.50 0.75 1.30
Adafactor LR=0.003 1 1.20 3.28 0.08 0.11 0.26 043 0.76
AdaGrad LR=0.1 1 0.58 4.57 0.00 0.01 0.10 0.35 0.84
AdaGrad LR=0.3 1 0.53 5.06 0.00 0.00 0.05 0.33 0.63
ShampooSgd LR=0.03 1 1.69 3.97 0.00 0.00 0.08 091 245
ShampooSgd LR=0.1 1 1.14 3.93 0.00 0.00 0.09 0.71 1.65
ShampooAdagrad LR=0.003 1 0.94 2.67 0.03 0.12 0.31 0.71 1.11
ShampooAdagrad LR=0.001 1 0.99 3.09 0.10 0.13 0.22 0.43 0.94
ShampooRmsprop LR=0.0001 1 1.22 2.49 0.03 0.11 039 091 1.23
ShampooRmsprop LR=3e-05 1 1.17 2.15 0.19 0.23 034 0.65 1.06
ShampooRmspropNormalized LR=0.0001 1 2.66 2.34 0.10 0.15 039 0.8 1.23
ShampooRmspropNormalized LR=3e-05 1 1.99 2.20 0.16 0.23 033 0.64 1.10
ShampooSqrtN LR=0.0001 1 3.49 3.09 0.04 0.06 0.21 1.30 2.25
ShampooSqrtN LR=3e-05 1 2.15 3.27 0.06 0.06 0.24 0.69 1.76
ShampooAdagradNormalized LR=0.003 1 2.22 2.57 0.12 0.14 0.34 0.57 0.98
ShampooAdagradNormalized LR=0.001 1 1.23 3.41 0.10 0.12 0.21 0.41 0.74
OptList idx=0 1 1.36 2.02 0.09 0.18 0.55 1.06 1.42
NAdamW idx=37 1 1.67 2.52 0.00 0.03 0.62 144 1.96
NAdamW idx=0 1 1.36 2.02 0.09 0.18 0.55 1.05 1.42
RNN MLP LOpt 1 3.39 241 0.00 0.06 0.63 0.96 1.74
STAR (wd=1.0) LOpt 1 1.00 3.42 0.01 0.06 0.20 0.50 1.28
STAR (wd=0) LOpt 1 0.41 5.51 0.02 0.04 0.07 0.22 0.63
STAR (wd=0, output norm=False) LOpt 1 0.53 5.09 0.00 0.00 0.05 0.35 0.68
VeLO (Ours) 1 7.10 1.02 0.03 120 1.81 325 7.21

72



Table 2: Multi trial optimizers. Normalizer computed with LR-tuned Adam.

H Name Trials AvgSp Avg1l/Sp 5% 10% 25% 50% 75% H
VeLO (Ours) 1 7.10 1.02 0.03 120 1.81 325 7.21
Adam 14 1.03 1.16 0.43 0.74 096 1.03 1.11
AdaBelief 14 1.53 1.11 0.52 0.67 0.92 1.06 1.32
SGD 14 1.10 3.67 0.05 0.07 0.16 0.53 0.94
SGDM 14 1.32 2.30 0.09 0.18 036 090 1.16
RMSProp 14 0.94 2.63 0.10 0.14 0.40 0.59 0.81
SM3 14 0.41 3.87 0.10 0.13 0.20 0.31 0.51
SM3beta2=999 14 0.78 1.99 0.20 0.28 047 0.71 0.88
Yogi 14 1.74 1.24 0.25 050 0.79 1.11 1.55
RAdam 14 1.78 0.99 044 068 094 1.14 1.53
Lamb 14 2.00 1.50 0.24 032 0.62 092 1.43
Lars 14 1.53 1.93 0.22 026 041 0.70 1.34
Fromage 14 1.08 3.40 0.04 0.07 026 043 0.80
AdamW 14 1.51 1.08 0.46 0.72 096 1.05 1.25
Adafactor 14 2.06 1.55 0.31 040 0.54 079 141
AdaGrad 14 0.94 2.50 0.11 0.15 0.33 079 1.11
ShampooSgd 14 3.25 1.79 0.08 0.25 042 156 3.99
ShampooAdagrad 14 1.48 1.29 0.30 048 0.66 0.95 1.65
ShampooRmsprop 14 1.83 1.02 040 0.53 088 1.19 1.89
ShampooRmspropNormalized 14 3.25 1.02 0.52 064 082 114 1.82
ShampooSqrtN 14 4.45 2.42 0.05 0.06 0.93 1.71 4.48
ShampooAdagradNormalized 14 3.53 1.25 0.41 046 0.58 0.83 1.67
OptListh 5 3.12 0.98 042 071 1.06 1.41 2.33
OptList10 10 3.76 0.64 0.76 1.09 1.26 1.60 3.18
NAdamW 1000 7.74 0.35 147 156 180 2.70 8.66
Best LR (Shampoo) 90 6.60 0.46 0.85 097 156 3.01 6.50
Best LR (No Shampoo) 225 4.40 0.56 1.06 1.09 121 1.7 3.14
Best LR (All) 315 7.70 0.34 140 156 1.76 3.49 6.83
Best Baseline 1315 8.91 0.28 1.56 1.64 226 4.27 10.95
Best LOpt Ensemble 76 11.42 0.41 146 1.65 2.89 6.28 20.28
LOpt Ensemble 1 1 7.37 1.13 0.06 0.79 163 332 761
LOpt Ensemble 2 2 8.55 0.88 0.11 138 2.02 4.24 8.96
LOpt Ensemble 3 3 9.54 0.72 0.41 1.41 242 4.59 14.96
LOpt Ensemble 4 4 9.99 0.71 0.42 143 247 494 15.59
LOpt Ensemble 5 5 10.30 0.70 0.42 145 2.64 4.94 15.59
LOpt Ensemble 5 5 10.30 0.70 042 145 2.64 4.94 15.59
LOpt Ensemble 10 10 11.06 0.68 042 150 2.64 5.62 20.14
LOpt Ensemble 15 15 11.33 0.42 1.44 160 284 6.28 20.27
LOpt Ensemble 20 20 11.40 0.42 144 162 284 6.28 20.27
LOpt Ensemble 30 30 11.42 0.41 1.46 1.65 289 6.28 20.28
LOpt Ensemble 37 37 11.42 0.41 1.46 1.65 289 6.28 20.28
Best Everything 1391 12.63 0.21 1.67 182 3.12 6.95 24.17

over 5 random seeds with only the best performing learning rate/hyperparameter setting per model.
In some cases—e.g. MLP-Mixer and ViT tasks on smaller datasets—many optimizers reach near
zero training loss. In these settings, the learned optimizer appears to be slow to train. This is a
side effect of targeting last loss — our optimizer has no incentive to reach low performance early in
training and thus waits until the very end to do so.
Limitations. Optimizer comparison is fraught with difficulties. This work is no exception.

First, in our comparisons, we are averaging over a specific distribution of tasks. This distribution
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Table 3: Single trial optimizers. Normalizer computed with extended data.

Name Trials AvgSp Avg1l/Sp 5% 10% 25% 50% 75% H
Adam LR=0.003 1 0.47 3.74 0.00 0.03 0.22 0.50 0.69
Adam LR=0.001 1 0.51 3.35 0.08 0.11 0.26 049 0.78
AdaBelief LR=0.001 1 0.54 3.11 0.06 0.09 0.28 0.53 0.78
AdaBelief LR=0.0003 1 0.41 3.97 0.09 0.12 0.18 0.32 0.62
SGD LR=0.3 1 0.34 5.47 0.00 0.00 0.05 0.24 0.65
SGD LR=0.1 1 0.34 591 0.00 0.00 0.06 0.15 0.60
SGDM LR=0.03 1 0.42 5.08 0.00 0.00 0.07 0.31 0.70
SGDM LR=0.1 1 0.39 5.02 0.00 0.00 0.06 0.31 0.71
RMSProp LR=0.001 1 0.32 4.94 0.00 0.06 0.11 0.29 0.49
RMSProp LR=0.0003 1 0.51 5.16 0.05 0.07 0.10 0.25 0.52
SM3 LR=0.03 1 0.19 6.54 0.06 0.07 0.11 0.16 0.25
SM3 LR=0.01 1 0.19 7.07 0.06 0.07 0.08 0.12 0.24
SM3beta2=999 LR=0.001 1 0.36 4.37 0.05 0.11 0.16 0.28 0.57
SM3beta2=999 LR—=0.003 1 0.30 5.09 0.00 0.02 0.09 0.28 0.50
Yogi LR=0.01 1 0.53 4.10 0.00 0.00 0.12 0.53 0.80
Yogi LR=0.003 1 0.52 3.92 0.01 0.07 0.15 048 0.84
RAdam LR=0.003 1 0.57 3.47 0.00 0.06 0.28 0.61 0.91
RAdam LR=0.001 1 0.56 2.83 0.09 0.16 0.30 0.56 0.82
Lamb LR=0.003 1 0.59 2.86 0.01 0.10 0.33 0.58 0.78
Lamb LR=0.001 1 0.62 3.00 0.06 0.15 0.27 047 0.80
Lars LR=1 1 0.54 3.18 0.01 0.13 0.27 043 0.82
Lars LR=0.3 1 0.73 4.48 0.07 0.09 0.15 0.29 0.53
Fromage LR=0.01 1 0.38 4.72 0.03 0.04 0.10 0.27 0.59
Fromage LR=0.003 1 0.24 6.61 0.00 0.02 0.06 0.13 0.37
AdamW LR=0.001 1 0.54 2.99 0.06 0.12 0.30 0.53 0.80
AdamW LR=0.0003 1 0.68 3.86 0.09 0.11 0.19 0.33 0.63
Adafactor LR=0.01 1 0.94 2.22 0.18 0.25 041 0.63 0.90
Adafactor LR=0.003 1 0.58 3.84 0.08 0.09 0.21 0.37 0.59
AdaGrad LR=0.3 1 0.37 5.37 0.00 0.00 0.04 0.28 0.57
AdaGrad LR=0.1 1 0.42 4.87 0.00 0.00 0.08 0.28 0.71
ShampooSgd LR=0.03 1 1.07 4.18 0.00 0.00 0.07 0.68 1.60
ShampooSgd LR=0.1 1 0.81 4.37 0.00 0.00 0.06 0.56 1.30
ShampooAdagrad LR=0.003 1 0.63 3.20 0.03 0.10 0.28 0.50 0.85
ShampooAdagrad LR=0.001 1 0.57 3.82 0.08 0.12 0.18 0.35 0.75
ShampooRmsprop LR=0.0001 1 0.94 2.93 0.01 0.10 032 0.59 0.89
ShampooRmsprop LR=3e-05 1 0.90 2.87 0.14 0.17 0.27 041 0.81
ShampooRmspropNormalized LR=0.0001 1 2.12 2.76 0.07 0.13 0.32 0.57 0.92
ShampooRmspropNormalized LR=3e-05 1 1.69 2.84 0.13 0.17 0.27 0.45 0.82
ShampooSqrtN LR=0.0001 1 2.87 3.34 0.04 0.05 0.19 0.81 1.45
ShampooSqrtN LR=3e-05 1 1.52 3.70 0.06 0.06 0.22 045 1.18
ShampooAdagradNormalized LR=0.003 1 1.94 3.14 0.08 0.14 0.25 0.41 0.76
ShampooAdagradNormalized LR=0.001 1 0.80 4.10 0.08 0.11 0.16 0.29 0.61
OptList idx=0 1 0.86 2.52 0.07 0.12 040 0.67 1.01
NAdamW idx=37 1 0.93 2.81 0.00 0.03 043 1.04 131
NAdamW idx=0 1 0.86 2.52 0.07 0.12 040 0.67 1.01
RNN MLP LOpt 1 2.99 2.83 0.00 0.06 0.44 0.70 1.09
STAR (wd=1.0) LOpt 1 0.70 3.86 0.00 0.06 0.16 0.39 0.99
STAR (wd=0) LOpt 1 0.31 5.91 0.02 0.04 0.07 0.20 047
STAR (wd=0, output norm=False) LOpt 1 0.37 5.49 0.00 0.00 0.05 0.28 0.53
VeLO (Ours) 1 5.05 1.19 0.02 0.79 120 2.18 3.87
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Table 4: Multi trial optimizers. Normalizer computed with extended data.

H Name Trials AvgSp Avg1l/Sp 5% 10% 25% 50% 75% H
VeLO (Ours) 1 5.05 1.19 0.02 0.79 1.20 2.18 3.87
Adam 14 0.72 1.83 0.22 037 0.57 078 0091
AdaBelief 14 1.06 1.57 0.40 043 0.64 0.81 0.94
SGD 14 0.79 4.08 0.04 0.05 0.15 041 0.80
SGDM 14 0.95 2.93 0.07 0.13 026 071 094
RMSProp 14 0.67 3.42 0.10 0.11 0.24 0.46 0.66
SM3 14 0.30 4.71 0.08 0.11 0.15 0.26 0.38
SM3beta2=999 14 0.52 2.74 0.12 0.18 0.32 0.55 0.68
Yogi 14 1.12 1.86 0.17 028 0.53 0.87 1.04
RAdam 14 0.83 1.48 0.30 0.40 0.69 0.92 1.01
Lamb 14 1.03 1.90 0.19 0.27 0.51 0.65 0.98
Lars 14 1.18 2.44 0.16 0.20 0.33 0.53 0.89
Fromage 14 0.71 4.01 0.04 0.07 019 035 0.61
AdamW 14 1.04 1.64 0.30 0.42 0.67 0.81 0.92
Adafactor 14 1.11 2.03 0.19 0.27 043 0.65 0.92
AdaGrad 14 0.61 3.27 0.07 0.11 0.23 0.63 0.88
ShampooSgd 14 2.16 2.39 0.07 0.13 030 122 227
ShampooAdagrad 14 0.84 1.91 0.19 0.29 047 0.68 1.02
ShampooRmsprop 14 1.26 1.58 024 042 056 080 1.15
ShampooRmspropNormalized 14 2.61 1.51 0.33 0.44 055 079 1.14
ShampooSqrtN 14 3.45 2.62 0.05 0.06 0.53 1.21 245
ShampooAdagradNormalized 14 291 1.84 0.27 033 044 063 1.11
OptListb 5 1.70 1.35 0.32 042 0.78 1.00 1.27
OptList10 10 2.09 1.01 0.52 063 0.89 1.16 1.42
NAdamW 1000 5.24 0.53 1.07 117 139 1.7 294
Best LR (Shampoo) 90 5.08 0.71 0.58 0.64 1.01 1.61 4.13
Best LR (No Shampoo) 225 2.76 0.80 0.83 092 1.00 1.12 1.50
Best LR (All) 315 5.80 0.52 098 1.10 1.29 1.81 4.18
Best Baseline 1315 6.68 0.43 1.17  1.28 1.57 224 4.73
Best LOpt Ensemble 76 8.62 0.53 093 129 1.87 3.38 9.57
LOpt Ensemble 1 1 5.05 1.19 0.02 079 1.20 2.18 3.87
LOpt Ensemble 2 2 6.00 1.01 0.11 096 1.50 2.48 5.23
LOpt Ensemble 3 3 6.65 0.90 0.34 1.05 1.59 260 6.28
LOpt Ensemble 4 4 7.09 0.89 0.35 1.08 1.75 262 6.32
LOpt Ensemble 5 5 7.39 0.88 0.35 1.16 1.75 2.62 6.68
LOpt Ensemble 5 5 7.39 0.88 0.35 1.16 1.75 262 6.68
LOpt Ensemble 10 10 8.18 0.84 0.35 123 1.80 3.09 7.90
LOpt Ensemble 15 15 8.46 0.81 0.44 123 1.80 3.23 9.57
LOpt Ensemble 20 20 8.56 0.54 091 125 1.80 3.33 9.57
LOpt Ensemble 30 30 8.61 0.53 093 129 1.87 334 9.57
LOpt Ensemble 37 37 8.62 0.53 093 129 1.87 3.38 9.57
Best Everything 1391 10.21 0.30 129 1.51 232 4.05 16.23

of tasks could be changed to make any optimizer appear to be the strongest'’.
present as fair a measure of performance as possible. This distribution of 109 tasks was slowly built
as a tool for our team to measure the performance of our optimizers. Tasks were never deleted, only
added, although we emphasize the paper body contains a reduced view of these tasks which excludes
ES and learned optimizer training tasks. While far from perfect, we have found performance on this

1YWe note that this issue of fair baselining is not unique to learned optimization.
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evaluation set predictive of the performance we have seen on larger models.

Second, in a number of figures we perform minimization or maximization to find the best
performing optimizer configurations from a particular set. Because each one of these losses is
itself stochastic, this aggregation will potentially result in better performance than possible. We
have mitigated this to some extent by computing final losses with many batches, as well as always
reporting numbers averaged over 5 random seeds for every hyperparameter configuration.

H Learned Optimizers Training Other Learned Optimizers

In order to accelerate our research on learned optimization, we have also been attempting to leverage
our pretrained learned optimizers to train other learned optimizers. The field of compilers has
been utilizing this self-improvement for some time now with “self-hosting” compilers | ,

|, but at this point we are unaware of any successful attempts in machine learning. In learned
optimizers this has been attempted in | , , | though the resulting optimizers are
not reliable enough to exclusively be used for meta-training. We test our optimizer on a variety of
different learned optimizer setups ranging from small scale distributions all the way up to training
another version of the optimizer used in this work, and this is discussed in the remainder of this
section. While we are able to make use of learned optimizers to train learned optimizers to a limited
degree—and even outperform the baseline methods we use in some cases—our results show that the
goal of self-improving optimizers is currently out of reach. The task to train an optimizer is too
far out of distribution and the resulting learned optimizers have the tendency to go unstable. We
include the results in this section to motivate future work on this problem.

H.1 Learned Optimizers Which Train a Single Problem

We test the ability of our pretrained learned optimizers to train other learned optimizers which
train a single task (Figure 47). We use the learned optimizers from [ | (called
MLPOpt) and [2022] (called AdaFactor, due to AdaFactor-style input features) and
train optimizers to train MLPs on CIFARI10 or FashionMNIST. First, we test meta-training
optimizers with gradients estimated via ES. This problem corresponds to the following tasks:
LOpt ES4 AdafacMLPLOpt FashionMnist 20, LOpt ES4 AdafacMLPLOpt FashionMnist 50,
and LOpt ES4 LOpt MLPLOpt Cifarl0 16 10. In 2 of the 3 tested architectures our learned
optimizers match or outperform Adam (what has been used to train these learned optimizers in past
work), but do not outperform an extensive hyperparameter tuning (NAdamW). In the final task, our
learned optimizer diverges.
Next, we test our optimizers on gradients computed with backpropagation. Past work |

, | has shown this is particularly unstable due to exploding and vanishing gradients
making this a particularly challenging problem to apply our learned optimizers to. Results are
shown in Figure 48; we find in all cases again we match or outperform Adam though training
curves are considerably more unstable, despite showing the median over 5 random initializations per
optimizer configuration. The problems we test on are 10, 50, and 100 step training on FashionM-
NIST with MLPOpt (LOpt  MLPLOpt_FashionMnist 10, LOpt _ MLPLOpt FashionMnist 50,
LOpt_ MLPLOpt FashionMnist 100), 50 step FashionMNIST with the AdaFactor MLPLOpt
(LOpt_ AdafacMLPLOpt_FashionMnist 50), as well as 10 step AdaFactor MLPLopt on CIFAR10
(LOpt_AdafacMLPLOpt Cifarl0 8 10).
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H.2 Multi-Task, Small Variation Across Tasks

Next we explore meta-training on a small mixture of MLP tasks specifically designed to be fast to
meta-train. Unlike the previous section, this optimization problem has more diversity in training
problems, and is both a harder to optimize and more representative of the general-purpose learned
optimizers trained in this work. The task distribution consists of training single hidden layer MLPs
with 32 hidden units trained on a mixture of CIFAR10, FashionMNIST, MNIST, and SVHN |

, | each of which is resized to 8x8 and converted to black and white.

As done by this work, meta-gradients are computed with ES. Unlike the rest of this work, and
because all the tasks have the same computational costs, we use synchronous training.

First, we meta-train with the learned optimizer from [ |—a small per-parameter
MLP (Figure 49). We find the learned optimizer is able to match learning rate-tuned Adam (the
optimizer used to train these in the original work).

Next, we meta-train the learned optimizer used in this work, the hierarchical hypernetwork-based
model described in Section B on this smaller task. When meta-training with a small outer-batch
size, we find the learned optimizer goes unstable and diverges (Figure 50a). We hypothesized this
was due to the high noise in the gradients, which we tested by increasing the batch size by a factor
of 4. We found this significantly improved meta-training stability though the learned optimizers still
lag behind well-tuned Adam.

H.3 Large scale: Self-Hosting Optimizer, Replicating Work with a Learned
Optimizer

Finally, we meta-train the same meta-training setup used to train the optimizer used in this work.
Due to the computational expense we were unable to perform careful studies of this setting. We
construct a cluster of approximately 4K machines and meta-train with an outer-batch size of 20,480—
5,120 batches of 4 vectorized tasks. First we test meta-training the exact same hypernetwork learned
optimizer as used in VeLO (Figure 51). We found VeLO was not capable of this task, and quickly
diverged.

Based on our results in the previous section, we initially believed this poor performance was
due to the fact that architectures such as VeLO’s—including, for example, hypernetwork multi-
plicative interactions—are far out of distribution. To test this, we take our same learned optimizer
meta-training setup, but instead train the hierarchical learned optimizer from [ |
(Figure 52). We find our learned optimizer is capable of optimizing this model and continually
making improvements. We see this as a promising initial result, but further study is needed.

I Open Source Details

In this section we give a practical overview of how to use our learned optimizer. This includes known
issues we have documented, as well as steps we have taken to work around them.

I.1 Considerations When Trying VeLO

While we believe our learned optimizer is vastly superior to prior work, it still has a couple of flaws
and limitations.
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1. Out of distribution tasks. Models with optimization properties unlike those seen in meta-
training (e.g. graph neural networks, reinforcement learning) sometimes have poor performance
as discussed in Section 4.4. We expect broadening the meta-training distribution will help fix
this.

2. Long training horizons. The performance of VeLO is unreliable past 200K iterations. This
is a limitation of the meta-training procedure. In practice, we found gradient accumulation
can be used in place of longer horizon training.

3. Computational and memory overhead. Depending on the task, our optimizers can require
substantial overhead—about twice the memory requirements of Adam, as well as additional
compute. While we believe in most cases this is acceptable, there will be cases where this is
difficult or impossible to accommodate within a particular set of infrastructure choices. As
outlined in Section B.7, however, our optimizers will work better given appropriate choices
with modern distributed training techniques.

4. Longer compile times. Our optimizers increase the number of operations greatly and this
can cause JAX compile times to increase. In our experience, compilation can take up to four
times as long as standard optimizers.

I.2 Released Optimizers and Learning Curves

We release the following items:

e Learned optimizer implementations. We release weights for a wide variety of pre-trained
learned optimizers. The models can be loaded from here. We hope these different optimizers,
meta-trained in different settings with different hyperparameters, will be useful to the study of
optimization in general.

e “Guard rail” model. In an effort to mitigate some of the previous issues, we release an
optimizer wrapped in a set of “guard rails”. First, to account for poor performance on longer
training horizons, if the number of steps passed into the optimizer is greater than 150K, we
will automatically do gradient accumulation to keep the number of steps the learned optimizer
under 150K. Second, we provide an optional setting to add weight decay. In some cases, even a
modest amount of weight decay (le-6) was able to stabilize a target model, and even improve
performance. The code for these guard rails can be found here.

e Learning curves. Finally, we release over a million training curves consisting of multiple
different optimizer kinds, with different hyperparameters, evaluated on over 100 tasks. See
our docs for more info. See this colab for an example of how to load the data and make plots
similar to the ones presented in this work.

J Open Questions for Future Work

The study of learned optimizers is relatively young. We have structured our research in two threads:
exploratory work to better understand learned optimizers, and large scale training incorporating
insights from the exploratory work. While we recognize that the compute required for large scale
meta-training is likely not available to all groups, there are still numerous areas open for research
that have potential for high impact. We highlight a few such areas we think are interesting to study
in follow up work.
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J.1 Learned Optimizer Architectures

More features from inner-training. Currently, our learned optimizer takes in the mean gradient
value. This mirrors the standard interface of optimizers in deep learning. By performing this
reduction, however we are losing potentially useful information which could further accelerate
training. Additionally, in some distributed training setting, this information is already available for
free.
Second, or approximate second order methods. Leveraging additional features such as those
from approximate second order methods such as KFac | , | or Shampoo |

, , , | could greatly speed up training. In addition to these approximations,
many modern deep learning libraries have the ability to compute hessian-vector products which
could also be useful for optimization.
One model with many configurations. The models explored in this work provide only a single
hyperparameter to the user—the number of steps one seeks to run the optimizer for. In reality,
researchers often have different use cases or goals for optimizers. Creating learned optimizers that, at
test time, can be configured to optimize targeting validation loss, optimize without a target length
of time, or any other desired configuration is an open area of research. We attempted this, but had
trouble meta-training such models.

J.2 Learned Optimizer Introspection

Learning about optimization by observing learned optimizers. Our learned optimizers
have learned to optimize quite well, but understanding what this optimizer is actually doing is
currently difficult. It is desirable to better understand specific mechanisms of action that arise in
meta-training to study them theoretically or distill them into simpler optimizers.

J.3 Meta-Training

Computational costs. The current computational cost of training learned optimizers on small
problems is tractable—our small scale test problem in B.5 can be trained on 4 TPU in a couple hours.
Our setup for training on more general distributions of tasks, however, uses vastly more compute
requiring thousands of accelerators for over a month. We believe that the compute requirements
in meta-training will mimic those in neural architecture search, which originally required hundreds

of accelerators | , |, whereas subsequent work was multiple orders of magnitude
more efficient | ) |. We expect a similar level of speedup is possible by leveraging
more, and better curricula, as well as leveraging more sophisticated meta-training techniques such as
PES | , |, Truncated ES | , |, gradients computed via backprop |

, |, or Guided ES | ) |.
Data distributions. In this work, the data distribution on which we meta-trained is largely
heuristic with minimal comparisons performed. We expect this distribution is far too diverse in
some areas and contains a number of models which are not representative of real world workloads,
and likely deficient in other areas. The distribution of tasks we meta-train on also controls the
computational cost of meta-training, so careful design of these distributions could also dramatically
accelerate meta-training as well.
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Systematic gradient staleness. When meta-training on diverse task distributions, meta-gradient
estimation time can vary widely. For our longer horizons, we estimate a difference of 4 orders of
magnitude across tasks in time taken. When meta-training with asynchronous batched gradients
the tasks which are slower to run will be computed on some weights from some previous point in
meta-training. This causes increased gradient staleness on these larger tasks. As far as we are aware,
this type of staleness is unique to this kind of meta-learning setup, and thus under-explored by the
community. We are unsure of the impact this has on meta-training, but have attempted to mitigate
it by meta-training with very large outer-gradient batches.

J.4 Usability of Learned Optimizers

Controllability of the optimizer. While being hyperparameter-free makes experimentation with
new architectures, datasets, or other training element considerably cheaper and easier, there are cases
when having the absolute best model, or training procedure outweighs all compute considerations
(for example, models being deployed to millions of users). In these cases, it is desirable to be able to
regain some level of specialization through tuning for a particular problem. We explore this briefly
in Appendix G.11, but found naively fine tuning with ES to be computationally costly.

Extended horizon training. One limitation we found with our optimizers is poor performance
when extrapolating for much longer than the meta-training distribution was trained on. We anticipate
that alternate meta-training strategies would mitigate this generalization in part, but more work is
required in this direction.

Better worst case performance. In our experiments, VeLO works well on around 90-95% of the
tasks we tried. In some cases, especially further away from the meta-training distribution, we get
highly variable performance and even cases where our learned optimizer diverges. Understanding
why these optimizers explode and fixing this will be crucial for wider adoption. As an example of
such a fix, | | proposed an example fix to improve stability by dynamically
switching to Adam.
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Figure 46: Page 4 of all evaluation tasks.
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Figure 47: Learned optimizers training other learned optimizers with ES. We find the
AdaFactor LOpt trained on FashionMnist for both 20 ((a)) and 50 ((b)) iterations optimize better
than learning rate-tuned Adam — the technique used to train these optimizers. On CIFAR10, we

find our learned optimizer diverges.
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Figure 48: Learned optimizers training other learned optimizers with gradients estimated
with backprop. On all of the 5 tasks shown we match or outperform learning rate-tuned Adam —

what is commonly used to train these optimizes. See section H.1 for details.
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Figure 49: Learned optimizers used to train other learned optimizers (AdaFac LOpt).
(a) We show learning curves of the best learning rate for learning rate-tuned Adam, and our learned
optimizer. We find our learned optimizer matches performance without any tuning. (b) We show
different learning rates as well as our learned optimizer performance. In both figures, the shaded
region denotes min and max with the solid value showing median performance across 3 random

seeds for LR-tuned Adam, and 5 random seeds for our learned optimizer.
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Figure 50: Learned optimizers used to train other learned optimizers (Hyper LOpt). (a)
Meta training the learned optimizer with an outer batch size of 32. (b) Meta-training with an
outer batch size of 128 improves the stability of the learned optimizer. (c) Outer-learning rate
sensitivity of Adam. We find our learned optimizers are close to the best learning rate though do
not outperform Adam. Across all plots we show median with min and max shown in the shaded
region with 3 trials for Adam and 5 used for the learned optimizer.
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Figure 51: Pre-trained learned optimizer re-training itself. (a) We show the meta-loss, the
loss fed into the LOpt for training. Early in meta-training our loss decreases nicely, but diverges after
500 inner iterations. (b,c) We show the 10th and 50th percentile evaluations. While our optimizer
is able to match learning rate-tuned Adam on >50% of the tasks after a modest amount of training,
we are unable to reach better performance. Training occurred over the course of 1.2 days.
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Figure 52: Pre-trained learned optimizer re-training a hierarchical RNN LOpt. (a) We
show the meta-loss, the loss fed into the LOpt for training. (b,c) We show the 10th and 50th
percentile evaluations. While our optimizer is able to match learning rate-tuned Adam on >50% of
the tasks after a modest amount of training, we are unable to reach better performance. Training

occurred over the course of 3 days.
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